Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

University of South Carolina

Theses and Dissertations

Automated Fiber Placement

Publication Year

Articles 1 - 6 of 6

Full-Text Articles in Entire DC Network

Leveraging Automated Fiber Placement Computer Aided Process Planning Framework For Defect Validation And Dynamic Layup Strategies, Joshua Allen Halbritter Apr 2023

Leveraging Automated Fiber Placement Computer Aided Process Planning Framework For Defect Validation And Dynamic Layup Strategies, Joshua Allen Halbritter

Theses and Dissertations

Process planning represents an essential stage of the Automated Fiber Placement (AFP) workflow. It develops useful and efficient machine processes based upon the working material, composite design, and manufacturing resources. The current state of process planning requires a high degree of interaction from the process planner and could greatly benefit from increased automation. Therefore, a list of key steps and functions are created to identify the more difficult and time-consuming phases of process planning. Additionally, a set of metrics must exist by which to evaluate the effectiveness of the manufactured laminate from the machine code created during the Process Planning …


Comprehensive Process Planning Optimization Framework For Automated Fiber Placement, Alex Ryan Brasington Apr 2023

Comprehensive Process Planning Optimization Framework For Automated Fiber Placement, Alex Ryan Brasington

Theses and Dissertations

Advanced composite materials came about in 1966 and have since been widely used due to the possibility of superior structural performance while also achieving weight reductions. Such opportunities have led to composite materials being used to fabricate complex components, often in the aerospace sector. Most components, especially in aviation, are on a large scale and are outside the capabilities of traditional composite manufacturing techniques. Traditional manufacturing methods are also labor intensive, time consuming, have a high level of material scrap, and are prone to human error. This has led to the need for innovative manufacturing solutions to withstand the ever-increasing …


Use Of Dic Measurements With Finite Element Models For Direct Heterogeneous Material Property Determination And Wrinkle Formation During Automated Fiber Placement, Sreehari Rajan Kattil Oct 2022

Use Of Dic Measurements With Finite Element Models For Direct Heterogeneous Material Property Determination And Wrinkle Formation During Automated Fiber Placement, Sreehari Rajan Kattil

Theses and Dissertations

In this work, application of DIC in combination with finite element modeling is demonstrated for efficient material characterization for complex heterogeneous materials and tow wrinkle formation during automated fiber placement.

The first part of the work describes the integration of DIC measurements with finite element models for direct property identification in heterogeneous material systems. The material property identification is based on solving partial differential equations (PDE) of equilibrium for unknown elastic material properties with known boundary conditions and full field strain data (Eg. DIC). The PDEs are solved numerically using Petrov-Galerkin finite element procedure. The classical Bubnov-Galerkin method is shown …


Hybrid Theory-Machine Learning Methods For The Prediction Of Afp Layup Quality, Christopher M. Sacco Jul 2022

Hybrid Theory-Machine Learning Methods For The Prediction Of Afp Layup Quality, Christopher M. Sacco

Theses and Dissertations

The advanced manufacturing capabilities provided through the automated fiber placement (AFP) system has allowed for faster layup time and more consistent production across a number of different geometries. This contributes to the modern production of large composite structures and the widespread adaptation of composites in industry in general and aerospace in particular. However, the automation introduced in this process increases the difficulty of quality assurance efforts. Industry available tools for predicting layup quality are either limited in scope, or have extremely high computational overhead. With the advent of automated inspection systems, direct capture of semantic inspection data, and therefore complete …


Effects Of Material Characteristics And Equipment Configuration On Profilometry Scanning Results For Error Mitigation In Automated Fiber Placement, Jacob Ondeck Apr 2020

Effects Of Material Characteristics And Equipment Configuration On Profilometry Scanning Results For Error Mitigation In Automated Fiber Placement, Jacob Ondeck

Theses and Dissertations

The Automated Fiber Placement manufacturing process is a method for constructing layered composite parts. This is done by placing tapes of material on a tool using a compaction roller and heat to tackify the material [1]. This manufacturing process is not new, but latest equipment generations can still introduce randomly occurring defects, presenting often as tow twists, gaps, unintentional overlaps and even missing tows during the layup process. These defects deviate the manufactured structure from the as-designed structure, and have been proven to introduce stress concentration sources, which can ultimately undermine the performance of a structure [2]. To detect and …


Tow-Path Characterization For Automated Fiber Placement, Roudy Wehbe Apr 2020

Tow-Path Characterization For Automated Fiber Placement, Roudy Wehbe

Theses and Dissertations

Automated Fiber Placement (AFP) is a manufacturing process used to fabricate large composite structures for aerospace applications. During the process, the machine head deposits multiple bands of composite material named tows over a prescribed path. Temperature, speed, and compaction pressure can be varied to obtain a good layup quality. For conventional laminated plate structures manufactured using the AFP process, fibers are laid at constant angles (0°, 90°, ±45°) in straight paths. However, to manufacture complex shell structures or variable stiffness plates, curved paths are necessary in the design leading to a length mismatch between the parallel edges of the towpath. …