Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

University of Kentucky

Series

Atmospheric boundary layer

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Considerations For Atmospheric Measurements With Small Unmanned Aircraft Systems, Jamey D. Jacob, Phillip B. Chilson, Adam L. Houston, Suzanne Weaver Smith Jul 2018

Considerations For Atmospheric Measurements With Small Unmanned Aircraft Systems, Jamey D. Jacob, Phillip B. Chilson, Adam L. Houston, Suzanne Weaver Smith

Mechanical Engineering Faculty Publications

This paper discusses results of the CLOUD-MAP (Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics) project dedicated to developing, fielding, and evaluating integrated small unmanned aircraft systems (sUAS) for enhanced atmospheric physics measurements. The project team includes atmospheric scientists, meteorologists, engineers, computer scientists, geographers, and chemists necessary to evaluate the needs and develop the advanced sensing and imaging, robust autonomous navigation, enhanced data communication, and data management capabilities required to use sUAS in atmospheric physics. Annual integrated evaluation of the systems in coordinated field tests are being used to validate sensor performance while integrated into various sUAS platforms. …


Development Of An Unmanned Aerial Vehicle For The Measurement Of Turbulence In The Atmospheric Boundary Layer, Brandon M. Witte, Robert F. Singler, Sean C. C. Bailey Oct 2017

Development Of An Unmanned Aerial Vehicle For The Measurement Of Turbulence In The Atmospheric Boundary Layer, Brandon M. Witte, Robert F. Singler, Sean C. C. Bailey

Mechanical Engineering Faculty Publications

This paper describes the components and usage of an unmanned aerial vehicle developed for measuring turbulence in the atmospheric boundary layer. A method of computing the time-dependent wind speed from a moving velocity sensor data is provided. The physical system built to implement this method using a five-hole probe velocity sensor is described along with the approach used to combine data from the different on-board sensors to allow for extraction of the wind speed as a function of time and position. The approach is demonstrated using data from three flights of two unmanned aerial vehicles (UAVs) measuring the lower atmospheric …