Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Entire DC Network

Unsteady Nanoscale Thermal Transport Across A Solid-Fluid Interface, Ganesh Balasubramanian, Soumik Banerjee, Ishwar K. Puri Sep 2008

Unsteady Nanoscale Thermal Transport Across A Solid-Fluid Interface, Ganesh Balasubramanian, Soumik Banerjee, Ishwar K. Puri

Ganesh Balasubramanian

We simulate unsteady nanoscale thermal transport at a solid-fluidinterface by placing cooler liquid-vapor Ar mixtures adjacent to warmer Fe walls. The equilibration of the system towards a uniform overall temperature is investigated using nonequilibrium molecular dynamics simulations from which the heat flux is also determined explicitly. The Ar–Fe intermolecular interactions induce the migration of fluid atoms into quasicrystallineinterfacial layers adjacent to the walls, creating vacancies at the migration sites. This induces temperature discontinuities between the solidlikeinterfaces and their neighboring fluid molecules. The interfacial temperature difference and thus the heat flux decrease as the system equilibrates over time. The averaged interfacial …


Sum Frequency Generation Vibrational Spectroscopy Of Pyridine Hydrogenation On Platinum Nanoparticles, Kaitlin M. Bratlie, Kyriakos Komvopoulos, Gabor A. Somorjai Aug 2008

Sum Frequency Generation Vibrational Spectroscopy Of Pyridine Hydrogenation On Platinum Nanoparticles, Kaitlin M. Bratlie, Kyriakos Komvopoulos, Gabor A. Somorjai

Kaitlin M. Bratlie

Pyridine hydrogenation in the presence of a surface monolayer consisting of cubic Pt nanoparticles stabilized by tetradecyltrimethylammonium bromide (TTAB) was investigated by sum frequency generation (SFG) vibrational spectroscopy using total internal reflection (TIR) geometry. TIR-SFG spectra analysis revealed that a pyridinium cation (C5H5NH+) forms during pyridine hydrogenation on the Pt nanoparticle surface, and the NH group in the C5H5NH+ cation becomes more hydrogen bound with the increase of the temperature. In addition, the surface coverage of the cation decreases with the increase of the temperature. An important contribution of this study is the in situ identification of reaction intermediates adsorbed …


Three-Dimensional Data Merging Using Holoimage, Song Zhang, Shing-Tung Yau Mar 2008

Three-Dimensional Data Merging Using Holoimage, Song Zhang, Shing-Tung Yau

Song Zhang

Three-dimensional data merging is vital for full-field three-dimensional (3D) shape measurement. All 3D range data patches, acquired from either different sensors or the same sensor in different viewing angles, have to be merged into a single piece to facilitate future data analysis. A novel method for 3D data merging using Holoimage is proposed. Similar to the 3D shape measurement system using a phase-shifting method, Holoimage is a phase-shifting–based computer synthesized fringe image. The 3D information is retrieved from Holoimage using a phase-shifting method. If two patches of 3D data with overlapping areas are rendered by OpenGL, the overlapping areas are …


Three-Dimensional Shape Measurement Using A Structured Light System With Dual Cameras, Song Zhang, Shing-Tung Yau Jan 2008

Three-Dimensional Shape Measurement Using A Structured Light System With Dual Cameras, Song Zhang, Shing-Tung Yau

Song Zhang

A structured light system for three-dimensional shape measurement with single camera has the shortcoming of camera occlusion. To alleviate this problem, this paper introduces a structured light system with dual cameras for three-dimensional shape measurement. We discuss (1) system description, (2) system calibration, (3) three-dimensional data registration using the iterative closest-point (ICP) algorithm, and (4) three-dimensional data merging using holoimage. The principle of the system is introduced, and experiments are presented to verify its performance.


The Nonlinear Dynamics Of Tapping Mode Atomic Force Microscopy With Capillary Force Interactions, Nicole N. Hashemi, H. Dankowicz, M.R. Paul Jan 2008

The Nonlinear Dynamics Of Tapping Mode Atomic Force Microscopy With Capillary Force Interactions, Nicole N. Hashemi, H. Dankowicz, M.R. Paul

Nastaran Hashemi

We study the nonlinear dynamics of a tapping mode atomic force microscope with tip-surface interactions that include attractive, repulsive, and capillary force contributions using numerical techniques tailored for hybrid or discontinuous dynamical systems that include forward-time simulation with event handling and numerical pseudo-arclength continuation. We find four branches of periodic solutions that are separated by windows of complex and irregular dynamics. The branches of periodic solutions end where the cantilever comes into grazing contact with event surfaces in state space, corresponding to the onset of capillary interactions and the onset of repulsive forces associated with contact. These windows of irregular …


The Dissipated Power In Atomic Force Microscopy Due To Interactions With A Capillary Fluid Layer, Nicole N. Hashemi, M.R. Paul, H. Dankowicz, W. Jhe Jan 2008

The Dissipated Power In Atomic Force Microscopy Due To Interactions With A Capillary Fluid Layer, Nicole N. Hashemi, M.R. Paul, H. Dankowicz, W. Jhe

Nastaran Hashemi

We study the power dissipated by the tip of an oscillating micron-scale cantilever as it interacts with a sample using a nonlinear model of the tip-surface force interactions that includes attractive, adhesive, repulsive, and capillary contributions. The force interactions of the model are entirely conservative and the dissipated power is due to the hysteretic nature of the interaction with the capillary fluid layer. Using numerical techniques tailored for nonlinear and discontinuous dynamical systems we compute the exact dissipated power over a range of experimentally relevant conditions. This is accomplished by computing precisely the fraction of oscillations that break the fluid …


Melt-Dispersion Mechanism For Fast Reaction Of Aluminum Particles: Extension For Micron Scale Particles And Fluorination, Valery I. Levitas, Michelle L. Pantoya, Kyle W. Watson Jan 2008

Melt-Dispersion Mechanism For Fast Reaction Of Aluminum Particles: Extension For Micron Scale Particles And Fluorination, Valery I. Levitas, Michelle L. Pantoya, Kyle W. Watson

Valery I. Levitas

The theoretically predicted relationship for the relative flame rate versus relative particle size based on the melt dispersion mechanism (MDM), which was previously confirmed for oxidation of 40–120nm diameter aluminum particles, is found to be in agreement with experiments for 1–3μm diameter Al particles and fluorination. The main physical parameters for MDM (pressure in molten particle, cavitation threshold, and nanoclusters’ velocity) have been estimated for micron scale particles. The results suggest parameters that could be controlled during particle synthesis that would enable micron scale Al particles to react and achieve the performance of nanoscale Al particles.


Melt Dispersion Versus Diffusive Oxidation Mechanism For Aluminum Nanoparticles: Critical Experiments And Controlling Parameters, Valery I. Levitas, Michelle L. Pantoya, Birce Dikici Jan 2008

Melt Dispersion Versus Diffusive Oxidation Mechanism For Aluminum Nanoparticles: Critical Experiments And Controlling Parameters, Valery I. Levitas, Michelle L. Pantoya, Birce Dikici

Valery I. Levitas

Critical experiments were performed on Al and MoO3 thermites. The diameter and alumina shell thickness of the Alnanoparticles were varied, and flame propagation velocities were measured. The results strongly support the melt-dispersion mechanism and contradict the diffusionoxidation mechanism. The parameters that control the oxidation rate and flame velocity are justified and directions for the synthesis of Alnanoparticles (which are opposite to the current directions based on diffusionoxidation) are suggested. An equation for the flame velocity versus Alnanoparticle geometrical parameters, thermomechanical properties, and synthesis parameters is formulated.


Finite Element Modeling Of Dynamics Of Martensitic Phase Transitions, Alexander V. Idesman, Joon Yeoun Cho, Valery I. Levitas Jan 2008

Finite Element Modeling Of Dynamics Of Martensitic Phase Transitions, Alexander V. Idesman, Joon Yeoun Cho, Valery I. Levitas

Valery I. Levitas

A finite element approach is suggested for the modeling of the dynamics of multivariant martensitic phase transitions (PTs) in elasticmaterials at the nanoscale in the three dimensional (3D) case. The model consists of a coupled system of the Ginzburg–Landau equations for transformation strain-related order parameters and dynamic elasticity equations. Thermodynamic potential [V. Levitas and D. Preston, Phys. Rev. B66, 134206 (2002)] that captures the main features of macroscopic stress-strain curves is used. The evolution of multivariant microstructure in a 3D specimen for cubic to tetragonal PT in a NiAl alloy is modeled with dynamic and static formulations. The numerical results …


Absolute Phase-Assisted Three-Dimensional Data Registration For A Dual-Camera Structured Light System, Song Zhang, Shing-Tung Yau Jan 2008

Absolute Phase-Assisted Three-Dimensional Data Registration For A Dual-Camera Structured Light System, Song Zhang, Shing-Tung Yau

Song Zhang

For a three-dimensional shape measurement system with a single projector and multiple cameras, registering patches from different cameras is crucial. Registration usually involves a complicated and time-consuming procedure. We propose a new method that can robustly match different patches via absolute phase without significantly increasing its cost. For y and z coordinates, the transformations from one camera to the other are approximated as third-order polynomial functions of the absolute phase. The x coordinates involve only translations and scalings. These functions are calibrated and only need to be determined once. Experiments demonstrated that the alignment error is within RMS 0.7 mm …