Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Entire DC Network

Opensim Versus Human Body Model: A Comparison Study For The Lower Limbs During Gait, Antoine Falisse, Sam Van Rossom, Johannes Gijsbers, Frans Steenbrink, Ben J. Van Basten, Ilse Jonkers, Antonie J. Van Den Bogert, Friedl De Groote Dec 2018

Opensim Versus Human Body Model: A Comparison Study For The Lower Limbs During Gait, Antoine Falisse, Sam Van Rossom, Johannes Gijsbers, Frans Steenbrink, Ben J. Van Basten, Ilse Jonkers, Antonie J. Van Den Bogert, Friedl De Groote

Mechanical Engineering Faculty Publications

Musculoskeletal modeling and simulations have become popular tools for analyzing human movements. However, end users are often not aware of underlying modeling and computational assumptions. This study investigates how these assumptions affect biomechanical gait analysis outcomes performed with Human Body Model and the OpenSim gait2392 model. The authors compared joint kinematics, kinetics, and muscle forces resulting from processing data from 7 healthy adults with both models. Although outcome variables had similar patterns, there were statistically significant differences in joint kinematics (maximal difference: 9.8 degrees {[}1.5 degrees] in sagittal plane hip rotation), kinetics (maximal difference: 0.36 {[}0.10] N.m/kg in sagittal plane …


Capturing The Competing Influence Of Thermal And Mechanical Loads On The Strain Of Turbine Blade Coatings Via High Energy X-Rays, Albert Manero, Kevin Knipe, Janine Wischek, Carla Meid, John Okasinski, Jonathan Almer, Anette M. Karlsson, Marion Bartsch, Seetha Raghavan Sep 2018

Capturing The Competing Influence Of Thermal And Mechanical Loads On The Strain Of Turbine Blade Coatings Via High Energy X-Rays, Albert Manero, Kevin Knipe, Janine Wischek, Carla Meid, John Okasinski, Jonathan Almer, Anette M. Karlsson, Marion Bartsch, Seetha Raghavan

Mechanical Engineering Faculty Publications

This paper presents findings of synchrotron diffraction measurements on tubular specimens with a thermal barrier coating (TBC) system applied by electron beam physical vapor deposition (EB-PVD), having a thermally grown oxide (TGO) layer due to aging in hot air. The diffraction measurements were in situ while applying a thermal cycle with high temperature holds at 1000 °C and varying internal air cooling mass flow and mechanical load. It was observed that, during high temperature holds at 1000 °C, the TGO strain approached zero if no mechanical load or internal cooling was applied. When applying a mechanical load, the TGO in-plane …


Compensation For Inertial And Gravity Effects In A Moving Force Platform, Sandra K. Hnat, Ben J.H. Van Basten, Antonie J. Van Den Bogert Jun 2018

Compensation For Inertial And Gravity Effects In A Moving Force Platform, Sandra K. Hnat, Ben J.H. Van Basten, Antonie J. Van Den Bogert

Mechanical Engineering Faculty Publications

Force plates for human movement analysis provide accurate measurements when mounted rigidly on an inertial reference frame. Large measurement errors occur, however, when the force plate is accelerated, or tilted relative to gravity. This prohibits the use of force plates in human perturbation studies with controlled surface movements, or in conditions where the foundation is moving or not sufficiently rigid. Here we present a linear model to predict the inertial and gravitational artifacts using accelerometer signals. The model is first calibrated with data collected from random movements of the unloaded system and then used to compensate for the errors in …


Optimal Mixed Tracking/Impedance Control With Application To Transfemoral Prostheses With Energy Regeneration, Gholamreza Khademi, Hanieh Mohammadi, Hanz Richter, Daniel J. Simon Apr 2018

Optimal Mixed Tracking/Impedance Control With Application To Transfemoral Prostheses With Energy Regeneration, Gholamreza Khademi, Hanieh Mohammadi, Hanz Richter, Daniel J. Simon

Mechanical Engineering Faculty Publications

We design an optimal passivitybased tracking/impedance control system for a robotic manipulator with energy regenerative electronics, where the manipulator has both actively and semi-actively controlled joints. The semi-active joints are driven by a regenerative actuator that includes an energy-storing element. Method: External forces can have a large influence on energy regeneration characteristics. Impedance control is used to impose a desired relationship between external forces and deviation from reference trajectories. Multi-objective optimization (MOO) is used to obtain optimal impedance parameters and control gains to compromise between the two conflicting objectives of trajectory tracking and energy regeneration. We solve the MOO problem …


Opty: Software For Trajectory Optimization And Parameter Identification Using Direct Collocation, Jason K. Moore, Antonie J. Van Den Bogert Jan 2018

Opty: Software For Trajectory Optimization And Parameter Identification Using Direct Collocation, Jason K. Moore, Antonie J. Van Den Bogert

Mechanical Engineering Faculty Publications

opty is a tool for describing and solving trajectory optimization and parameter identification problems based on symbolic descriptions of ordinary differential equations and differential algebraic equations that describe a dynamical system. The motivation for its development resides in the need to solve optimal control problems of biomechanical systems. The target audience is engineers and scientists interested in solving nonlinear optimal control and parameter identification problems with minimal computational overhead.


Neuromuscular Reflex Control For Prostheses And Exoskeletons, Sandra K. Hnat Jan 2018

Neuromuscular Reflex Control For Prostheses And Exoskeletons, Sandra K. Hnat

ETD Archive

Recent powered lower-limb prosthetic and orthotic (P/O) devices aim to restore legged mobility for persons with an amputation or spinal cord injury. Though various control strategies have been proposed for these devices, specifically finite-state impedance controllers, natural gait mechanics are not usually achieved. The goal of this project was to invent a biologically-inspired controller for powered P/O devices. We hypothesize that a more muscle-like actuation system, including spinal reflexes and vestibular feedback, can achieve able-bodied walking and also respond to outside perturbations. The outputs of the Virtual Muscle Reflex (VMR) controller are joint torque commands, sent to the electric motors …


Human Activity Tracking And Recognition Using Kinect Sensor, Roanna Lun Jan 2018

Human Activity Tracking And Recognition Using Kinect Sensor, Roanna Lun

ETD Archive

The objective of this dissertation research is to use Kinect sensor, a motion sensing input device, to develop an integrated software system that can be used for tracking non-compliant activity postures of consented health-care workers for assisting the workers' compliance to best practices, allowing individualized gestures for privacy-aware user registration, movement recognition using rule-based algorithm, real-time feedback, and exercises data collection. The research work also includes developing a graphical user interface and data visualization program for illustrating statistical information for administrator, as well as utilizing cloud based database system used for data resource.


Non-Intrusive Optical Measurement Of Electron Temperature In Near Field Plume Of Hall Thruster, Peter J. Urban Jan 2018

Non-Intrusive Optical Measurement Of Electron Temperature In Near Field Plume Of Hall Thruster, Peter J. Urban

ETD Archive

Currently there is a large interest in the use of more efficient means of propulsion in long term missions due to the costs and difficulties associated with placing and maintaining the needed fuel for conventional chemical systems in orbit. Mass reduction of upper stages will return large returns due to the great reduction in required lower stage fuel. Due to these factors, alternatives are undergoing active research, though this paper is concerned with the area of electrical propulsion. Electric propulsion is broadly defined as propulsion where the energization of the exhaust occurs via application of electromagnetic fields as opposed to …


Predictive Simulations Of Gait And Their Application In Prosthesis Design, Anne D. Koelewijin Jan 2018

Predictive Simulations Of Gait And Their Application In Prosthesis Design, Anne D. Koelewijin

ETD Archive

Predictive simulations predict human gait by solving a trajectory optimization problem by minimizing energy expenditure. These simulations could predict the effect of a prosthesis on gait before its use. This dissertation has four aims, to show the application of predictive simulations in prosthesis design and to improve the quality of predictive simulations. Aim 1 was to explain joint moment asymmetry in the knee and hip in gait of persons with a transtibial amputation (TTA gait). Predictive simulations showed that an asymmetric gait required less effort. However, a small effort increase yielded a gait with increased joint moment symmetry and reduced …


Advanced Manufacturing Of Titanium Alloys For Biomedical Applications, Nicholas C. Mavros Jan 2018

Advanced Manufacturing Of Titanium Alloys For Biomedical Applications, Nicholas C. Mavros

ETD Archive

In metallurgy, Titanium has been a staple for biomedical purposes. Its low toxicity and alloying versatility make it an attractive choice for medical applications. However, studies have shown the difference in elastic modulus between Titanium alloys (116 GPa) and human bone (40-60 GPa) contribute to long term issues with loose hardware fixation. Additionally, long term studies have shown elements such as Vanadium and Aluminum, which are commonly used in Ti-6Al-4V biomedical alloys, have been linked to neurodegenerative diseases like Alzheimers and Parkinsons. Alternative metals known to be less toxic are being explored as replacements for alloying elements in Titanium alloys. …


An Anisotropic Constitutive Model For Nuclear Grade Graphite, James Christopher Jan 2018

An Anisotropic Constitutive Model For Nuclear Grade Graphite, James Christopher

ETD Archive

Graphite material is used extensively in nuclear reactors however the material has a limited strain range for elastic behavior. This provides the motivation to derive a constitutive model that captures the inelastic deformations exhibited by this material. This dissertation first presents details of an isotropic constitutive model derived using continuum principles of engineering mechanics that accounts for different inelastic behavior in tension and compression. An inelastic dissipation function was developed using an integrity basis proposed by Green and Mkrtichian (1977) for the isotropic version of the model. This isotropic model was then extended to capture anisotropic stress-strain behavior using directional …


Comparative Study Of The Microstructure And Mechanical Properties Of Mechanically Alloyed And Spark Plasma Sintered Alxcocrfeni (0≤X≤2)High Entropy Alloys, David Mikhail Jan 2018

Comparative Study Of The Microstructure And Mechanical Properties Of Mechanically Alloyed And Spark Plasma Sintered Alxcocrfeni (0≤X≤2)High Entropy Alloys, David Mikhail

Undergraduate Research Posters 2018

High entropy alloys are a new class of material systems that have promising potential in high temperature structural applications. Mechanical alloying (MA) has gained special attention as a powerful non-equilibrium process for fabricating amorphous and nanocrystalline materials, whereas spark plasma sintering (SPS) is a unique technique for processing dense and near net shape bulk alloys with homogenous microstructure. This research paper discusses novel mechanically alloyed followed by spark plasma sintering approach for assessing composition-microstructure-microhardness relationship in AlxCoCrFeNi (0≤x≤2) high entropy alloy as a candidate system. With increasing Al content, there was a gradual change from a fcc-based microstructure to a …


Bidirectionally Stretched Flow Of Jeffrey Liquid With Nanoparticles, Rosseland Radiation And Variable Thermal Conductivity, M. Archana, B. J. Gireesha, M. M. Rashidi, B. C. Prasannakumara, Rama S.R. Gorla Jan 2018

Bidirectionally Stretched Flow Of Jeffrey Liquid With Nanoparticles, Rosseland Radiation And Variable Thermal Conductivity, M. Archana, B. J. Gireesha, M. M. Rashidi, B. C. Prasannakumara, Rama S.R. Gorla

Mechanical Engineering Faculty Publications

Heat and mass transfer stretched flow of an incompressible, electrically conducting Jeffrey fluid has been studied numerically. Nanoparticles are suspended in the base fluid and it has many applications such as cooling of engines, thermal absorption systems, lubricants fuel cell, nanodrug delivery system and so on. Temperature dependent variable thermal conductivity with Rosseland approximation is taken into account and suction effect is employed in the boundary conditions. The governing partial differential equations are first transformed into set of ordinary differential equations using selected similarity transformations, which are then solved numerically using Runge-Kutta-Felhberg fourth-fifth order method along with shooting technique. The …


Spark Plasma Sintering Of Soft Magnetic Materials, Harnavdeep Kaur, Taban Larimian, Javier Esquivel Jan 2018

Spark Plasma Sintering Of Soft Magnetic Materials, Harnavdeep Kaur, Taban Larimian, Javier Esquivel

Undergraduate Research Posters 2018

Over the past 3 decades, iron-based soft magnetic alloys such as Finemet (Fe73.5Si13.5B9Nb3Cu1 (at%)) have attracted great interest due to their exceptional magnetic properties like high magnetization, low coercivity, and high curie temperature. However, the production of amorphous precursor requires very high cooling rates, and thus only wires, powders, and thin ribbons are achievable, yet these are not suitable in industrial applications where large volume of bulk magnetic components is required. Mechanical alloying (MA) has gained special attention as a powerful non-equilibrium process for fabricating amorphous and nanocrystalline materials, whereas spark plasma sintering (SPS) is a unique technique for processing …