Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

Brigham Young University

Series

Aircraft

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Meshless Large Eddy Simulation Of Propeller-Wing Interactions With Reformulated Vortex Particle Method, Eduardo Alvarez, Andrew Ning Nov 2022

Meshless Large Eddy Simulation Of Propeller-Wing Interactions With Reformulated Vortex Particle Method, Eduardo Alvarez, Andrew Ning

Faculty Publications

The vortex particle method (VPM) has gained popularity in recent years due to a growing need to predict complex aerodynamic interactions during preliminary design of electric multirotor aircraft. However, VPM is known to be numerically unstable when vortical structures break down close to the turbulent regime. In recent work, the VPM has been reformulated as a large eddy simulation (LES) in a scheme that is both meshless and numerically stable, without increasing its computational cost. In this study, we build upon this meshless LES scheme to create a solver for interactional aerodynamics. Rotor blades are introduced through an actuator line …


Dynamic Optimization Of High-Altitude Solar Aircraft Trajectories Under Station-Keeping Constraints, Abraham Martin, Nathaniel Gates, Andrew Ning, John Hedengren Nov 2018

Dynamic Optimization Of High-Altitude Solar Aircraft Trajectories Under Station-Keeping Constraints, Abraham Martin, Nathaniel Gates, Andrew Ning, John Hedengren

Faculty Publications

This paper demonstrates the use of nonlinear dynamic optimization to calculate energy- optimal trajectories for a high-altitude, solar-powered Unmanned Aerial Vehicle (UAV). The objective is to maximize the total energy in the system while staying within a 3 km mission radius and meeting other system constraints. Solar energy capture is modeled using the vehicle orientation and solar position, and energy is stored both in batteries and in potential energy through elevation gain. Energy capture is maximized by optimally adjusting the angle of the aircraft surface relative to the sun. The UAV flight and energy system dynamics are optimized over a …


Extended Formation Flight At Transonic Speeds, Andrew Ning, Ilan Kroo, Michael Aftosmis, Marian Nemec, James Kless Sep 2014

Extended Formation Flight At Transonic Speeds, Andrew Ning, Ilan Kroo, Michael Aftosmis, Marian Nemec, James Kless

Faculty Publications

Aircraft flown in formation can realize significant reductions in induced drag by flying in regions of wake upwash. However, most transports fly at transonic speeds where the impact of compressibility on formation flight is not well understood. This study utilizes an Euler solver to analyze the inviscid aerodynamic forces and moments of transonic wing/body configurations flying in a two-aircraft formation. Formations with large streamwise separation distances (10-50 wingspans) are considered.

This work indicates that compressibility-related drag penalties in formation flight may be eliminated by slowing 2-3% below the nominal out-of-formation cruise Mach number (either at fixed lift coefficient or fixed …


Utilizing An Improved Rotorcraft Dynamic Model In State Estimation, Timothy Mclain, Randal W. Beard, Robert C. Leishman, John Macdonald, Jeffrey L. Ferrin, Stephen C. Quebe Sep 2011

Utilizing An Improved Rotorcraft Dynamic Model In State Estimation, Timothy Mclain, Randal W. Beard, Robert C. Leishman, John Macdonald, Jeffrey L. Ferrin, Stephen C. Quebe

Faculty Publications

Multirotor aircraft have become a popular platform for indoor flight. To navigate these vehicles indoors through an unknown environment requires the use of a SLAM algorithm, which can be processing intensive. However, their size, weight, and power capacity limit the processing capabilities available onboard. In this paper, we describe an approach to state estimation that helps to alleviate this problem. By using an improved dynamic model we show how to more accurately estimate the aircraft states than can be done with the traditional approach of integrating IMU measurements. The estimation is done with relatively infrequent corrections from accelerometers (40Hz) and …


Adaptive Quaternion Control Of A Miniature Tailsitter Uav, Nathan B. Knoebel, Timothy W. Mclain Jun 2008

Adaptive Quaternion Control Of A Miniature Tailsitter Uav, Nathan B. Knoebel, Timothy W. Mclain

Faculty Publications

The miniature tailsitter is a unique aircraft with inherent advantages over typical unmanned aerial vehicles. With the capabilities of both hover and level flight, these small, portable systems can produce efficient maneuvers for enhanced surveillance and autonomy with little threat to surroundings and the system itself. Such vehicles create control challenges due to the two different flight regimes. These challenges are addressed with a computationally efficient adaptive quaternion control algorithm. A backstepping method for model cancellation and consistent tracking of reference model attitude dynamics is derived. This is used in conjunction with a regularized data-weighting recursive least-squares algorithm for the …