Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Mathematics

PDF

2008

Finite element method

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Multigrid Convergence For Second Order Elliptic Problems With Smooth Complex Coefficients, Jay Gopalakrishnan, Joseph E. Pasciak Jan 2008

Multigrid Convergence For Second Order Elliptic Problems With Smooth Complex Coefficients, Jay Gopalakrishnan, Joseph E. Pasciak

Mathematics and Statistics Faculty Publications and Presentations

The finite element method when applied to a second order partial differential equation in divergence form can generate operators that are neither Hermitian nor definite when the coefficient function is complex valued. For such problems, under a uniqueness assumption, we prove the continuous dependence of the exact solution and its finite element approximations on data provided that the coefficients are smooth and uniformly bounded away from zero. Then we show that a multigrid algorithm converges once the coarse mesh size is smaller than some fixed number, providing an efficient solver for computing discrete approximations. Numerical experiments, while confirming the theory, …


Polynomial Extension Operators. Part I, Leszek Demkowicz, Jay Gopalakrishnan, Joachim Schöberl Jan 2008

Polynomial Extension Operators. Part I, Leszek Demkowicz, Jay Gopalakrishnan, Joachim Schöberl

Mathematics and Statistics Faculty Publications and Presentations

In this series of papers, we construct operators that extend certain given functions on the boundary of a tetrahedron into the interior of the tetrahedron, with continuity properties in appropriate Sobolev norms. These extensions are novel in that they have certain polynomial preservation properties important in the analysis of high order finite elements. This part of the series is devoted to introducing our new technique for constructing the extensions, and its application to the case of polynomial extensions from H½(∂K) into H¹(K), for any tetrahedron K.