Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Mathematics

PDF

University of Richmond

Maximum likelihood

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Critical Fault-Detecting Time Evaluation In Software With Discrete Compound Poisson Models, Min-Hsiung Hsieh, Shuen-Lin Jeng, Paul Kvam Jan 2019

Critical Fault-Detecting Time Evaluation In Software With Discrete Compound Poisson Models, Min-Hsiung Hsieh, Shuen-Lin Jeng, Paul Kvam

Department of Math & Statistics Faculty Publications

Software developers predict their product’s failure rate using reliability growth models that are typically based on nonhomogeneous Poisson (NHP) processes. In this article, we extend that practice to a nonhomogeneous discrete-compound Poisson process that allows for multiple faults of a system at the same time point. Along with traditional reliability metrics such as average number of failures in a time interval, we propose an alternative reliability index called critical fault-detecting time in order to provide more information for software managers making software quality evaluation and critical market policy decisions. We illustrate the significant potential for improved analysis using wireless failure …


Statistical Models For Hot Electron Degradation In Nano-Scaled Mosfet Devices, Suk Joo Bae, Seong-Joon Kim, Way Kuo, Paul H. Kvam Jan 2007

Statistical Models For Hot Electron Degradation In Nano-Scaled Mosfet Devices, Suk Joo Bae, Seong-Joon Kim, Way Kuo, Paul H. Kvam

Department of Math & Statistics Faculty Publications

In a MOS structure, the generation of hot carrier interface states is a critical feature of the item's reliability. On the nano-scale, there are problems with degradation in transconductance, shift in threshold voltage, and decrease in drain current capability. Quantum mechanics has been used to relate this decrease to degradation, and device failure. Although the lifetime, and degradation of a device are typically used to characterize its reliability, in this paper we model the distribution of hot-electron activation energies, which has appeal because it exhibits a two-point discrete mixture of logistic distributions. The logistic mixture presents computational problems that are …


Reliability Estimation Based On System Data With An Unknown Load Share Rule, Hyoungtae Kim, Paul H. Kvam Jan 2004

Reliability Estimation Based On System Data With An Unknown Load Share Rule, Hyoungtae Kim, Paul H. Kvam

Department of Math & Statistics Faculty Publications

We consider a multicomponent load-sharing system in which the failure rate of a given component depends on the set of working components at any given time. Such systems can arise in software reliability models and in multivariate failure-time models in biostatistics, for example. A load-share rule dictates how stress or load is redistributed to the surviving components after a component fails within the system. In this paper, we assume the load share rule is unknown and derive methods for statistical inference on load-share parameters based on maximum likelihood. Components with (individual) constant failure rates are observed in two environments: (1) …