Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Nonlinear Dynamics In Combinatorial Games: Renormalizing Chomp, Eric J. Friedman, Adam S. Landsberg Jun 2007

Nonlinear Dynamics In Combinatorial Games: Renormalizing Chomp, Eric J. Friedman, Adam S. Landsberg

WM Keck Science Faculty Papers

We develop a new approach to combinatorial games that reveals connections between such games and some of the central ideas of nonlinear dynamics: scaling behaviors, complex dynamics and chaos, universality, and aggregation processes. We take as our model system the combinatorial game Chomp, which is one of the simplest in a class of "unsolved" combinatorial games that includes Chess, Checkers, and Go. We discover that the game possesses an underlying geometric structure that "grows" (reminiscent of crystal growth), and show how this growth can be analyzed using a renormalization procedure adapted from physics. In effect, this methodology allows one to …


Complex Dynamics And Multistability In A Damped Harmonic Oscillator With Delayed Negative Feedback, Sue Ann Campbell, Jacques Bélair, Toru Ohira, John Milton Dec 1995

Complex Dynamics And Multistability In A Damped Harmonic Oscillator With Delayed Negative Feedback, Sue Ann Campbell, Jacques Bélair, Toru Ohira, John Milton

WM Keck Science Faculty Papers

A center manifold reduction and numerical calculations are used to demonstrate the presence of limit cycles, two-tori, and multistability in the damped harmonic oscillator with delayed negative feedback. This model is the prototype of a mechanical system operating with delayed feedback. Complex dynamics are thus seen to arise in very plausible and commonly occurring mechanical and neuromechanical feedback systems.