Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Process Intensification For Rare Earth Elements Adsorption By Resonant Vibratory Mixing, Oluwatosin Adebayo, Richard Ladouceur, Zainab Nasrullah May 2024

Process Intensification For Rare Earth Elements Adsorption By Resonant Vibratory Mixing, Oluwatosin Adebayo, Richard Ladouceur, Zainab Nasrullah

Graduate Theses & Non-Theses

The adsorption capacity for six rare earth elements (Lanthanum, Terbium, Neodymium, Dysprosium, Praseodymium, and Holmium) by biochar produced from hemp feedstock was investigated. An innovative approach to enhancing the adsorption of rare earth elements using biochar was studied and investigates the potential of resonant vibratory mixing (RVM) as a process intensification method compared to conventional mechanical mixing for the adsorption process. Hemp hurds as source of biomass was pyrolyzed to produce biochar at a temperature of 4500C for 60 minutes. The biochar was characterized by FTIR (Fourier Transform Infra-red), SEM (Scanning Electron Microscopy), Surpass 3 Electrokinetic solid surface analyzer, and …


A Review On Biochar As An Adsorbent For Pb(Ii) Removal From Water, Pushpita Kumkum, Sandeep Kumar Jan 2024

A Review On Biochar As An Adsorbent For Pb(Ii) Removal From Water, Pushpita Kumkum, Sandeep Kumar

Civil & Environmental Engineering Faculty Publications

Heavy metal contamination in drinking water is a growing concern due to its severe health effects on humans. Among the many metals, lead (Pb), which is a toxic and harmful element, has the most widespread global distribution. Pb pollution is a major problem of water pollution in developing countries and nations. The most common sources of lead in drinking water are lead pipes, faucets, and plumbing fixtures. Adsorption is the most efficient method for metal removal, and activated carbon has been used widely in many applications as an effective adsorbent, but its high production costs have created the necessity for …


Design Of Hybrid Pah Nanoadsorbents By Surface Functionalization Of Zro2 Nanoparticles With Phosphonic Acids, Nadine Bou Orm, Thomas Grea, Marwa Hamandi, Alexandre Lambert, Florent Lafay, Emmanuelle Vulliet, Stephane Daniele Apr 2021

Design Of Hybrid Pah Nanoadsorbents By Surface Functionalization Of Zro2 Nanoparticles With Phosphonic Acids, Nadine Bou Orm, Thomas Grea, Marwa Hamandi, Alexandre Lambert, Florent Lafay, Emmanuelle Vulliet, Stephane Daniele

All Works

This study focuses on the preparation of innovative nanocomposite materials based on surface modification of commercial nano-ZrO2 optimized from Bronsted acid-base surface reactions. This surface modification was carried out by direct grafting of suitable phosphonic acids bearing a vinylic or phenylic substituent in aqueous solution. Different loading quantities of the anchoring organophosphorus compounds were applied for each materials synthesis. The resulting nanohybrids were thoroughly characterized by infrared spectroscopy (DRIFT), solid-state nuclear magnetic resonance (NMR), nitrogen adsorption-desorption (BET), thermogravimetric analysis (TG), and X-ray photoelectron spectroscopy (XPS), demonstrating the reliability and efficient tunability of the surface functionalization based on the starting Zr/P …


Activated Carbon Preparation And Modification For Adsorption, Yuhe Cao Jan 2017

Activated Carbon Preparation And Modification For Adsorption, Yuhe Cao

Electronic Theses and Dissertations

Butanol is considered a promising, infrastructure-compatible biofuel. Butanol has a higher energy content than ethanol and can be used in conventional gas engines without modifications. Unfortunately, the fermentation pathway for butanol production is restricted by its toxicity to the microbial strains used in the process. Butanol is toxic to the microbes, and this can slow fermentation rates and reduce butanol yields. Gas stripping technology can efficiently remove butanol from the fermentation broth as it is produced, thereby decreasing its inhibitory effects. Traditional butanol separation heavily depends on the energy intensive distillation method. One of the main issues in acetone-butanol-ethanol fermentation …