Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 17 of 17

Full-Text Articles in Entire DC Network

Process Intensification For Rare Earth Elements Adsorption By Resonant Vibratory Mixing, Oluwatosin Adebayo, Richard Ladouceur, Zainab Nasrullah May 2024

Process Intensification For Rare Earth Elements Adsorption By Resonant Vibratory Mixing, Oluwatosin Adebayo, Richard Ladouceur, Zainab Nasrullah

Graduate Theses & Non-Theses

The adsorption capacity for six rare earth elements (Lanthanum, Terbium, Neodymium, Dysprosium, Praseodymium, and Holmium) by biochar produced from hemp feedstock was investigated. An innovative approach to enhancing the adsorption of rare earth elements using biochar was studied and investigates the potential of resonant vibratory mixing (RVM) as a process intensification method compared to conventional mechanical mixing for the adsorption process. Hemp hurds as source of biomass was pyrolyzed to produce biochar at a temperature of 4500C for 60 minutes. The biochar was characterized by FTIR (Fourier Transform Infra-red), SEM (Scanning Electron Microscopy), Surpass 3 Electrokinetic solid surface analyzer, and …


Sustainable Materials For Environment − Multifunctional Material Made From Dead Leaves And Nanostructured Materials For Antibiotic Degradation, Siyuan Fang Jan 2024

Sustainable Materials For Environment − Multifunctional Material Made From Dead Leaves And Nanostructured Materials For Antibiotic Degradation, Siyuan Fang

Dissertations, Master's Theses and Master's Reports

As environmental pollution from industrial processes and human activities continues to rise, finding efficient approaches to recycle waste materials and degrade persistent contaminants becomes increasingly critical. Dead leaves, an abundant but underutilized biomass, present an opportunity for creating value-added materials if their biocomponents can be preserved and transformed. Simultaneously, antibiotics such as tetracycline are widely found in water bodies but pose serious ecological and health risks, necessitating effective degradation methods. This dissertation addresses these challenges by leveraging natural and nanostructured materials to develop multifunctional products and advanced photocatalytic processes.

Chapter 3 of this dissertation addresses the challenge of converting waste …


Investigations Of Dual-Electrolyte Layer Protonic Ceramic Fuel Cells For Enhanced Electrochemical Performance And Longevity, Abdul-Sommed Hadi Aug 2023

Investigations Of Dual-Electrolyte Layer Protonic Ceramic Fuel Cells For Enhanced Electrochemical Performance And Longevity, Abdul-Sommed Hadi

Graduate Theses & Non-Theses

A cermet anode comprising of yttria-doped barium zirconate, BZY and nickel, Ni is now the preferred choice of materials for use in proton conducting fuel cell (PCFC) anodes because of their influence on anode oxidation kinetics. The Ni grains, being in a solid solution with the BZY support, helps improve on the catalytic activity and conductivity, in addition to the relative stability of BZY in steam and hydrocarbon reforming environments, as well as BZY’s excellent protonic conductivity.

Ni-BZY based anodes, sintered onto a ~600-micron electrolyte-supported substrates of BZY, BCZY (yttria- and ceria-doped barium zirconate), and a BZY/BCZY dual electrolyte-layer substrate, …


A Study Of Biochar Production Via Continuous Vacuum-Assisted Pyrolysis, Max Wohlgenant May 2023

A Study Of Biochar Production Via Continuous Vacuum-Assisted Pyrolysis, Max Wohlgenant

Graduate Theses & Non-Theses

The present study focuses upon the design, fabrication, and feasibility of the bulk production of scientific biochar for mobile delivery. In the 2022 annual report, the National Academies of Science, Engineering, and Medicine recommended the integration of mobile, decentralized reactors that employ flexible manufacturing and circular economic principles. Biochar production, involving the thermal degradation of biomass under an inert atmosphere to yield remediation media is an ideal material to satisfy this recommendation. Many potential application sites, such as abandoned mines, are remote and limit the construction of large infrastructure. The continuous vacuum-assisted pyrolysis (CVAP) reactor was designed to: increase biochar …


Investigation Of The Structure, Chemistry And Functional Performance Of Novel Biochars, Julie Elizabeth Muretta Apr 2022

Investigation Of The Structure, Chemistry And Functional Performance Of Novel Biochars, Julie Elizabeth Muretta

Graduate Theses & Non-Theses

Biochars are a class of carbonaceous materials possessing high degrees of structural and chemical disorder in both organic and inorganic constituent phases. Despite this disorder, and in some cases because of this disorder, biochars have shown strong performance in adsorbing and even sequestering contaminants from soil, surface water and air. Biochar is the carbonaceous, solid product of heating carbonaceous feedstock in an oxygen-limited environment above 250°C, usually sourced from inexpensive, locally available agricultural and forestry wastes which can otherwise be difficult and expensive to dispose of. Biochar possesses attractive functional properties like high specific surface area, high micropore volume, and …


Biomass-Derived Electrode Materials And Sustainable Processes For Supercapacitors, Katelyn M. Shell Jan 2021

Biomass-Derived Electrode Materials And Sustainable Processes For Supercapacitors, Katelyn M. Shell

Theses and Dissertations

Biomass is one of the most abundant natural resources and has been used as a source of energy for thousands of years. Biomass as a precursor for energy storage materials is still relatively novel and faces several obstacles before becoming commonly used in today’s electrical devices. Currently, energy storage devices, such as batteries, capacitors, and supercapacitors, utilize petroleum-derived graphitic carbons for anodes, generating a need for more sustainable materials. Biomass, as a carbon-rich source for electrode materials, presents a viable and economically feasible alternative due to the prevalent lignocellulosic compounds: lignin, cellulose, and hemicellulose. Preliminary studies on the solid residues …


Design Of Efficient Carbon-Based Adsorbents For The Removal Of Organic And Inorganic Water Contaminants, Sayedeh Soroosh Mortazavian Dehkordi Dec 2019

Design Of Efficient Carbon-Based Adsorbents For The Removal Of Organic And Inorganic Water Contaminants, Sayedeh Soroosh Mortazavian Dehkordi

UNLV Theses, Dissertations, Professional Papers, and Capstones

Granular activated carbon (AC) and biochar (BC) are two carbon-based adsorbents commonly used for water and wastewater treatment. However, these adsorbents have drawbacks that suppress their aqueous contaminants removal efficiency. Their major disadvantages are that AC has low selectivity and reusability potential, and BC has a hydrophobic nature.

The scope of this dissertation is to enhance the performance of commonly-used carbon-based adsorbents for the removal of organic and inorganic water contaminants and to understand the interactive mechanism of contaminants’ ions/molecules with adsorbents. Hexavalent chromium (Cr(VI)) and trichloroethylene (TCE) are two types of inorganic and organic water contaminants, respectively, which are …


Effects Of Heat Treatment On The Dimensional Stability And Mechanical Properties Of Guadua Bamboo, Kade Schmitz, Skye Dascher, Shalto Dascher Jun 2019

Effects Of Heat Treatment On The Dimensional Stability And Mechanical Properties Of Guadua Bamboo, Kade Schmitz, Skye Dascher, Shalto Dascher

Materials Engineering

Contributing to about 4% of particulate emissions, the construction industry is one of the largest polluters of the environment. In an effort to reduce emissions, BamCore has produced a dual panel wall system made of Guadua bamboo with a Douglas fir veneer. Bamboo is a highly renewable material with a fast growth rate and carbon sequestration abilities. This project investigates how heat treating Guadua bamboo influences its dimensional changes and mechanical properties for building applications. It was found that a dimensional increase in every direction occurred for all samples when exposed to higher relative humidity (50% to 90%), and that …


Compositional Analysis Of Cerium And Cesium In Rapid Setting Cement As An Immobilization Agent For Nuclear Waste, Riyadh M. Motny Jan 2019

Compositional Analysis Of Cerium And Cesium In Rapid Setting Cement As An Immobilization Agent For Nuclear Waste, Riyadh M. Motny

Theses and Dissertations

A feasibility of rapid setting cement (RSC) as an agent of immobilization for certain elements such as fission products or radioactive materials was explored. Cerium (Ce) and cesium (Cs) have been selected as a surrogate for U and/or Pu and fission products, respectively, in this study in three phases. In Phase I, RSC was evaluated for physical properties (e.g., porosity, density, pH values, etc.) using two groups methods—the cement powder at different concentrations of Ce (2 – 10 wt%) with deionized water (DIW) and artificial seawater (ASW). The results showed that the final setting time and compressive strength of RSC …


Lignin-Derived Carbon And Nanocomposite Materials For Energy Storage Applications, Wenqi Li Jan 2019

Lignin-Derived Carbon And Nanocomposite Materials For Energy Storage Applications, Wenqi Li

Theses and Dissertations--Biosystems and Agricultural Engineering

With a growing demand for electrical energy storage materials, lignin-derived carbon materials have received increasing attention in recent years. As a highly abundant renewable carbon source, lignin can be converted to a variety of advanced carbon materials with tailorable chemical, structural, mechanical and electrochemical properties through thermochemical conversion (e.g. pyrolysis). However, the non-uniformity in lignin structure, composition, inter-unit linkages and reactivity of diverse lignin sources greatly influence lignin fractionation from plant biomass, the pyrolysis chemistry, and property of the resulting carbon materials.

To introduce a better use of lignocellulosic biomass to biofuels and co-products, it is necessary to find novel …


Biomass-Derived Activated Carbons For Electrical Double Layer Supercapacitors: Performance And Stress Effect, Wenxin Cao Jan 2019

Biomass-Derived Activated Carbons For Electrical Double Layer Supercapacitors: Performance And Stress Effect, Wenxin Cao

Theses and Dissertations--Chemical and Materials Engineering

The vigorous development of human civilization has significantly increased the energy consumption in recent years. There is a great need to use renewable energy sources to substitute the depleting traditional fossil fuels, such as crude oil, natural gas and coal. The development of low-cost and high-performance energy storage devices (ESDs) and systems have drawn great attention due to their feasibility as backup power supply and their applications in portable electronics and electric vehicles. Supercapacitors are among the most important ESDs because of their long charging-discharging cycle life, high power capability and a large operating temperature range. In this thesis, high-performance …


Development And Evaluation Of Post-Production Oxygenation Techniques For The Augmentation Of Biochar, Matthew David Huff Jan 2018

Development And Evaluation Of Post-Production Oxygenation Techniques For The Augmentation Of Biochar, Matthew David Huff

Chemistry & Biochemistry Theses & Dissertations

Biochar is the carbon rich solid by-product of biomass pyrolysis. Interest in biochar can be broken down to several main categories: use as a carbon sequestration agent, use as a medium for the removal via adsorption of unwanted materials in wastewater, and as a soil amendment for the increase of cation exchange capacity (CEC). In order to generate a biochar which is stable enough for carbon sequestration, higher temperature pyrolysis must be used in order to ensure a lower O:C ratio in order to increase the half-life of biochar in soil. This dissertation addresses the evaluation of biochars made from …


Activated Carbon Preparation And Modification For Adsorption, Yuhe Cao Jan 2017

Activated Carbon Preparation And Modification For Adsorption, Yuhe Cao

Electronic Theses and Dissertations

Butanol is considered a promising, infrastructure-compatible biofuel. Butanol has a higher energy content than ethanol and can be used in conventional gas engines without modifications. Unfortunately, the fermentation pathway for butanol production is restricted by its toxicity to the microbial strains used in the process. Butanol is toxic to the microbes, and this can slow fermentation rates and reduce butanol yields. Gas stripping technology can efficiently remove butanol from the fermentation broth as it is produced, thereby decreasing its inhibitory effects. Traditional butanol separation heavily depends on the energy intensive distillation method. One of the main issues in acetone-butanol-ethanol fermentation …


Corn Stover Biochar In Gypsum Board: Empirical Analysis Of Thermal Conductivity And Flexural Strength, Albena Yordanova Jan 2016

Corn Stover Biochar In Gypsum Board: Empirical Analysis Of Thermal Conductivity And Flexural Strength, Albena Yordanova

Dissertations and Theses @ UNI

Gypsum board, an economical and durable finish material for wall and ceiling construction in the United States and worldwide, is the component with the lowest thermal performance in a typical exterior wall assembly. It also constitutes a substantial portion of construction waste in landfills, potentially creating harmful environmental effects and dangerous gases. To minimize the negative effects of fast growing construction waste of gypsum in landfills and meet higher standards for energy efficiency in construction, there is a need to explore sustainable ways of improving thermal properties of gypsum board and recycling the material. Gypsum can be recycled and used …


Microwave Absorption Properties Of Tires, Yuzhe Zhang Jan 2014

Microwave Absorption Properties Of Tires, Yuzhe Zhang

Dissertations, Master's Theses and Master's Reports - Open

The waste tire is belonging to insoluble high polymer elastic materials. It takes hundreds of years to resolve the macromolecules of waste tire into the standard which does not pollute the environment. More and more waste tires are air stored which causes space occupation and mosquito-breeding in the places that will spread diseases. The disposal methods include landfill, stockpiles, dumping and incising into particles. However, all these methods are not technically and economically efficient. The trend for the development of waste tire treatment processes is low cost, on-site, and high product recovery at high energy efficiency. In this project, microwave …


Soil Nutrient Availability Properties Of Biochar, Nicole C. Esposito Oct 2013

Soil Nutrient Availability Properties Of Biochar, Nicole C. Esposito

Master's Theses

Biochar’s high porosity and negative surface charge allows for numerous soil and plant benefits such as increased water retention, high nutrient availability, and plant growth. By analysing biochar’s effect of all of these factors, a system can be put in place in which soils can be remediated with the proper soil amendments. This report discusses and tests the effects of varying rates of biochar on pH levels, cation exchange capacity, and nutrient exchangeability (of calcium, magnesium, sodium, and potassium) in soil. Corn plants were also grown in soils of varying amendment types and analysed for plant growth and germination to …


The Characterization And Comparison Of Biochar Produced From A Decentralized Reactor Using Forced Air And Natural Draft Pyrolysis, Leah Herbert, Ian Hosek, Rishi Kripalani Jun 2012

The Characterization And Comparison Of Biochar Produced From A Decentralized Reactor Using Forced Air And Natural Draft Pyrolysis, Leah Herbert, Ian Hosek, Rishi Kripalani

Materials Engineering

The soil additive properties of biochar have proven both effective and globally beneficial, but depend heavily on feedstock used and process conditions. This study characterizes how forced and natural draft air flows affect the biochar’s soil amendment potential. Biochars manufactured from two pine species of feedstock, in timber and pellet form, were compared against a designer biochar. The designer biochar held the lowest C:N ratio (57.43), followed by the natural draft pellets (199.5), forced air timber (282.5), forced air pellets (422.7), and natural draft timber (503.7). The designer char had the largest cation exchange capacity at 138.5 cmolc/kg; the decentralized …