Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Magnetic Interaction Reversal In Watermelon Nanostructured Cr-Doped Fe Nanoclusters, Maninder Kaur, Qilin Dai, Mark Bowden, Mark H. Engelhard, Yaqiao Wu, Jinke Tang, You Qiang Nov 2013

Magnetic Interaction Reversal In Watermelon Nanostructured Cr-Doped Fe Nanoclusters, Maninder Kaur, Qilin Dai, Mark Bowden, Mark H. Engelhard, Yaqiao Wu, Jinke Tang, You Qiang

Materials Science and Engineering Faculty Publications and Presentations

Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (%) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr2O3 and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (~25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of σ-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs.


Low-Symmetry Monoclinic Ferroelectric Phase Stabilized By Oxygen Octahedra Rotations In Strained Euₓsr₁₋ₓtio₃ Thin Films, Anna N. Morozovska, Yijia Gu, Victoria V. Khist, Maya D. Glinchuk, Long-Qing Chen, For Full List Of Authors, See Publisher's Website. Apr 2013

Low-Symmetry Monoclinic Ferroelectric Phase Stabilized By Oxygen Octahedra Rotations In Strained Euₓsr₁₋ₓtio₃ Thin Films, Anna N. Morozovska, Yijia Gu, Victoria V. Khist, Maya D. Glinchuk, Long-Qing Chen, For Full List Of Authors, See Publisher's Website.

Materials Science and Engineering Faculty Research & Creative Works

Using Landau-Ginzburg-Devonshire theory and phase-field modeling, we explore the complex interplay between a structural order parameter (oxygen octahedron rotation) and polarization in EuxSr1-xTiO3 thin films. Under a biaxially tensile strain, a low-symmetry monoclinic phase with in-plane ferroelectric polarization is found to be stabilized by antiferrodistortive oxygen octahedra tilts. The monoclinic phase is stable over a wide temperature range. It is characterized by a large number of energetically equivalent polar and structural twin domains. This work demonstrates the development of a spontaneous polarization and piezo- and pyroelectricity in a ferroelastic twin boundary arising from flexoelectric coupling …


Universal Emergence Of Spatially Modulated Structures Induced By Flexoantiferrodistortive Coupling In Multiferroics, Eugene A. Eliseev, Sergei V. Kalinin, Yijia Gu, Maya D. Glinchuk, Victoria V. Khist, For Full List Of Authors, See Publisher's Website. Jan 2013

Universal Emergence Of Spatially Modulated Structures Induced By Flexoantiferrodistortive Coupling In Multiferroics, Eugene A. Eliseev, Sergei V. Kalinin, Yijia Gu, Maya D. Glinchuk, Victoria V. Khist, For Full List Of Authors, See Publisher's Website.

Materials Science and Engineering Faculty Research & Creative Works

We proved the existence of a universal flexoantiferrodistortive coupling as a necessary complement to the well-known flexoelectric coupling. The coupling is universal for all antiferrodistortive systems and can lead to the formation of incommensurate, spatially modulated phases in multiferroics. Our analysis can provide a self-consistent mesoscopic explanation for a broad range of modulated domain structures observed experimentally in multiferroics.