Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Series

Additive manufacturing

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Modeling Powder Spreadability In Powder-Based Processes Using The Discrete Element Method, Austin T. Sutton, M. Hossein Sehhat, Ming C. Leu, Joseph W. Newkirk Jul 2024

Modeling Powder Spreadability In Powder-Based Processes Using The Discrete Element Method, Austin T. Sutton, M. Hossein Sehhat, Ming C. Leu, Joseph W. Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Powder-bed fusion (PBF) processes refer to a subset of Additive Manufacturing (AM) techniques where powder is spread on the build-plate before melting (by a laser or electron beam). While PBF processes are attractive due to their ability for realizing complex structures that are either difficult or impossible to create through conventional means, the parts fabricated with these techniques can exhibit defects such as pores, inclusions, and excessive surface roughness. To minimize these defects, much research has been dedicated towards process maturation by optimizing laser or electron beam parameters. However, these developmental efforts typically do not address the recoating process where …


Additive Manufacturing Of Complexly Shaped Sic With High Density Via Extrusion-Based Technique – Effects Of Slurry Thixotropic Behavior And 3d Printing Parameters, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Tian Huang, Wenbao Jia, Ming-Chuan Leu, Haiming Wen Oct 2022

Additive Manufacturing Of Complexly Shaped Sic With High Density Via Extrusion-Based Technique – Effects Of Slurry Thixotropic Behavior And 3d Printing Parameters, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Tian Huang, Wenbao Jia, Ming-Chuan Leu, Haiming Wen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Additive manufacturing of dense SiC parts was achieved via an extrusion-based process followed by electrical-field assisted pressure-less sintering. The aim of this research was to study the effect of the rheological behavior of SiC slurry on the printing process and quality, as well as the influence of 3D printing parameters on the dimensions of the extruded filament, which are directly related to the printing precision and quality. Different solid contents and dispersant- Darvan 821A concentrations were studied to optimize the viscosity, thixotropy and sedimentation rate of the slurry. The optimal slurry was composed of 77.5 wt% SiC, Y2O3 and Al2O3 …


Additive Manufacturing Of Continuous Carbon Fiber-Reinforced Sic Ceramic Composite With Multiple Fiber Bundles By An Extrusion-Based Technique, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Ming-Chuan Leu, Haiming Wen Jan 2022

Additive Manufacturing Of Continuous Carbon Fiber-Reinforced Sic Ceramic Composite With Multiple Fiber Bundles By An Extrusion-Based Technique, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Ming-Chuan Leu, Haiming Wen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Due to the high cost, complex preparation process and difficulty in structural design, the traditional methods for carbon fiber reinforced SiC ceramic composite preparation have great limitations. This paper presents a technique for the additive manufacturing multiple continuous carbon fiber bundle-reinforced SiC ceramic composite with core-shell structure using an extrusion-based technique. A conventional nozzle system was modified to print simultaneously a water based SiC paste with continuous carbon fibers. Different levels of binder contents were investigated to optimize the stickiness, viscosity, thixotropy and viscoelasticity of the paste. After sintering, SiC whiskers were generated on the surface of fiber, which is …


Building Zr-Based Metallic Glass Part On Ti-6al-4v Substrate By Laser-Foil-Printing Additive Manufacturing, Yingqi Li, Yiyu Shen, Ming-Chuan Leu, Hai-Lung Tsai Aug 2017

Building Zr-Based Metallic Glass Part On Ti-6al-4v Substrate By Laser-Foil-Printing Additive Manufacturing, Yingqi Li, Yiyu Shen, Ming-Chuan Leu, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Through using Zr intermediate layers, Zr52.5Ti5Al10Ni14.6Cu17.9 metallic glass (MG) parts are successfully built on Ti-6Al-4V substrates by laser-foil-printing (LFP) additive manufacturing technology in which MG foils are laser welded layer-by-layer onto the substrate. The printed MG part is free of porosity, cracking and crystallization; additionally, its glass transition temperature, crystallization temperature, micro-hardness, and tensile strength are very similar to the original MG material. The Zr intermediate layers are aimed at preventing direct interaction between the first layer of MG foil and the Ti substrate; otherwise, the welded MG foils would peel …