Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 107

Full-Text Articles in Entire DC Network

Modular Composite Sandwich Structures For Thermal And Structural Retrofitting Of Existing Buildings, Marc Al Ghazal Dec 2023

Modular Composite Sandwich Structures For Thermal And Structural Retrofitting Of Existing Buildings, Marc Al Ghazal

Masters Theses

Around 40% of global energy consumption and 30% of worldwide carbon dioxide (CO2) emissions are attributed to buildings. Most of this consumption is dedicated to ensuring thermal comfort. The goal of this research was to develop and field validate retrofit solutions to improve the energy efficiency of buildings. Exterior cladding panels were designed and tested to ensure adequate thermal and structural performance. Sandwich panels (glass fibers reinforced polymer (GFRP) skins and polymeric foam cores) were fabricated using the vacuum assisted resin transfer molding (VARTM) process. Extruded polystyrene (XPS) and polyurethane (PU) foams were compared as core materials through a series …


Refractory High-Entropy Alloys: Design, Fabrication, Characterization, And Nanoparticle Synthesis, John Hutson Whitlow Aug 2023

Refractory High-Entropy Alloys: Design, Fabrication, Characterization, And Nanoparticle Synthesis, John Hutson Whitlow

Masters Theses

High-Entropy Alloys have been a highly researched area of metals ever since their introduction in 2004 by Brian Cantor and Jien-Weh Yeh. In the continued research of High-Entropy Alloys (HEAs), a specific area concerning Refractory High-Entropy Alloys (RHEAs) has emerged for their high-temperature applications. Although RHEAs have maintained high strength and toughness at high temperatures, their low ductility still needs to be addressed. A dataset was created to find correlations between various characteristics of RHEAs and their composition. A set of seven compositions were selected and fabricated. Mechanical tests were run on the seven compositions, and a proposal was written …


Correlating Large-Format Additive Manufacturing Processing Parameters To Fiber Length And The Mechanical Performance Of Reinforced Polymer Composites, Andrew Phillip Rhodes May 2023

Correlating Large-Format Additive Manufacturing Processing Parameters To Fiber Length And The Mechanical Performance Of Reinforced Polymer Composites, Andrew Phillip Rhodes

Masters Theses

The Big Area Additive Manufacturing (BAAM) system at Oak Ridge National Laboratory has been used to produce carbon fiber reinforced structures for several years, including vehicles, building constituents, composite tooling, etc. While the development of a large-format polymer additive manufacturing (AM) system has moved quickly, the impact of the BAAM’s extruder on the length of carbon fiber feedstock has not been systematically studied. Numerous studies in processing fiber reinforced thermoplastics in plasticizing and injection molding systems have shown that fibers are subjected to significant shear as they are processed, which can cause a drastic reduction in fiber length which negatively …


Surface Corrosion Response Of Al Alloys A383 And Aural 2 With Ce Additions In Aqueous Nacl And Salt-Fog Environments, Michael James Thompson May 2023

Surface Corrosion Response Of Al Alloys A383 And Aural 2 With Ce Additions In Aqueous Nacl And Salt-Fog Environments, Michael James Thompson

Masters Theses

Copper is commonly used in aluminum alloys to increase its strength by solid solution and precipitation strengthening, however, the corrosion resistance is inversely related to the amount of copper in the alloy. Over 70 percent of material used to produce aluminum alloys in the US come from recycled (secondary) alloys, many of which have a copper content of more than one percent by weight. Alloys with tightly controlled tolerances, where copper is seen as an impurity, are unable to utilize many of the recycling feedstock without adding newly processed (primary) aluminum to dilute impurities to within specifications. Primary aluminum is …


Comparative Analysis On Low Cost Continuous Carbon Fiber Polypropylene Composite Using Compression Molding And Automated Tape Placement, Benjamin U. Schwartz May 2023

Comparative Analysis On Low Cost Continuous Carbon Fiber Polypropylene Composite Using Compression Molding And Automated Tape Placement, Benjamin U. Schwartz

Masters Theses

Carbon fiber reinforced plastics (CFRP) are widely used throughout the aerospace industry where a weight reduction remains the highest priority with less emphasis on cost. Textile grade carbon fiber (TCF) and other low cost carbon fiber (LCCF) alternatives have recently emerged for use in the automotive market where emissions regulations have pushed automotive manufacturers and research institutions to look for cost effective light weight materials. Fiber reinforced thermoplastics provide an effective solution that align with automotive design including low cost, high processing rates, high impact toughness, unlimited shelf life, and recyclability.

TCF and Zoltek_PX35 fibers are two LCCF aimed at …


Iron Nanoparticles For Magnetic Imaging Applications, Aleia Williams Dec 2022

Iron Nanoparticles For Magnetic Imaging Applications, Aleia Williams

Masters Theses

Extensive research on iron oxide nanoparticles for various applications including nanomedicine, energy applications, environmental remediation, and magnetic imaging have previously been performed. Many are currently FDA approved as magnetic resonance imaging contrast agents and tracers for magnetic particle imaging applications. Magnetic properties of such materials are crucial to obtain good contrast and resolution. However, studies have shown the magnetic properties of iron oxide nanoparticles are less in comparison to those found in pure iron nanoparticle.

This research involves the synthesis and characterization of iron nanoparticles for applications in magnetic resonance imaging contrast agents, magnetic particle imaging tracers, and therapeutic agents …


Optimized 3d-Printing Of Carbon Fiber-Reinforced Polyether-Ether-Ketone (Cfr-Peek) For Use In Overmolded Lattice Composite, Ryan C. Ogle Dec 2022

Optimized 3d-Printing Of Carbon Fiber-Reinforced Polyether-Ether-Ketone (Cfr-Peek) For Use In Overmolded Lattice Composite, Ryan C. Ogle

Masters Theses

Current orthopedic implants are overwhelmingly composed from metallic materials. These implants show superior mechanical properties, but this can additionally result in stress shielding due to a modulus mismatch between the bone tissue and implanted device. Polymeric implants reduce this stress shielding effect but have much lower mechanical properties, limiting their use. Polylactic acid (PLA) is a widely used biodegradable thermoplastic polymer, however, its use has been limited by the polymer’s mechanical properties and rapid loss of strength during degradation in vivo. Polyether-ether-ketone (PEEK) is another common biocompatible polymer , with chemical and mechanical properties which make it a popular alternative …


Combinatorial Cuni Alloy Thin Film Catalysts For Layer Number Regulation In Cvd Grown Graphene, Sumeer Khanna May 2022

Combinatorial Cuni Alloy Thin Film Catalysts For Layer Number Regulation In Cvd Grown Graphene, Sumeer Khanna

Masters Theses

In this work, synthesis of combinatorial library of CuxNi1-x (copper nickel) alloy thin films via co-sputtering from Cu (copper) and Ni (nickel) targets as catalysts for chemical vapor deposition (CVD) growth of graphene is reported. The gradient alloy morphology, composition and microstructure were characterized via scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD), respectively. Subsequently, the CuxNi1-x alloy thin films were used to grow graphene in a CH4-Ar-H2 (methane-argon-hydrogen) ambient in thermal CVD tube furnace. The underlying rationale is to adjust the CuxNi1-x …


Development Of Codoped Cesium Iodide Scintillators For Medical Imaging Applications, Everett M. Cavanaugh May 2022

Development Of Codoped Cesium Iodide Scintillators For Medical Imaging Applications, Everett M. Cavanaugh

Masters Theses

Cesium iodide has a rich history of use as a scintillating material. CsI finds use in a variety of fields, but it is primarily used in radiography, tomography, and geological exploration. Of the three common variants of CsI, thallium doped CsI is by far the most widely used among these applications. It possesses favorable physical characteristics like a high density and high effective Z and exhibits high light output at room temperature. Despite how great CsI scintillators may be on paper, they have an Achilles heel: afterglow. CsI:Tl has significant afterglow which leads to imaging artifacts that can be difficult …


Design And Evaluation Of A Unique Weighted-Sum-Based Anger Camera, Matthew W. Seals May 2022

Design And Evaluation Of A Unique Weighted-Sum-Based Anger Camera, Matthew W. Seals

Masters Theses

Anger camera imaging technology has become widely popular for neutron diffraction imaging due to recent shortages in Helium-3 (He-3). Research into neutron diffraction optimized Anger camera by the Oak Ridge National Laboratory (ORNL) detectors group has provided an alternative to He-3 Tube-based detectors with a high-resolution Anger camera. However, the cost of these high-resolution Anger camera technology can make it less attractive than He-3 tubes when a large Field of View (FOV) is desired. Currently, there is a need for a lower-cost alternative to this high-resolution anger camera. Further applications for Anger camera have become of interest with the advent …


Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo Dec 2021

Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo

Masters Theses

Hot stamping is part of a specific type of metalworking procedure widely used in the automotive industry. This research seeks to help make hot stamp tooling component production more cost-effective by using large-scale additive manufacturing. Additive manufacturing can produce dissimilar steel components that can be more cost-effective and time-efficient and allow for complex geometries to be made. A dissimilar steel system consisting of 410 martensitic stainless steel and AWS ER70S-6 mild steel is proposed to make hot stamps, making them more cost-efficient. However, the material interface's mechanical behavior in 410SS-mild steel additively manufactured material systems is not well understood. This …


Radiation Effects On Lithium Indium Diselenide Semiconductors As Neutron Imaging Detectors, Robert M. Golduber Dec 2021

Radiation Effects On Lithium Indium Diselenide Semiconductors As Neutron Imaging Detectors, Robert M. Golduber

Masters Theses

The studies presented in this work aim to improve upon the knowledge base of lithium indium diselenide (LISe) semiconductors to understand how the material behaves in high radiation environments and refine the process of turning it into a neutron detector. LISe has great potential as neutron imaging detector because of the high neutron absorption efficiency of its enriched 6Li component and its ability to discriminate between gamma-rays and neutrons. Its ability to remain functional after being irradiated with large amounts of neutron fluence has been tested and the change in its electro-optical properties with relation to fluence has been …


Investigation Of Microstructure Heterogeneity Using Multi-Length Scale Characterization Of Additively Manufactured 316l Ss Components For Nuclear Applications, Amy J. Godfrey May 2021

Investigation Of Microstructure Heterogeneity Using Multi-Length Scale Characterization Of Additively Manufactured 316l Ss Components For Nuclear Applications, Amy J. Godfrey

Masters Theses

Additive manufacturing allows for near net shape components to be manufactured with complex geometries and internal cooling channels while simultaneously allowing for microstructure control. Additive manufacturing has an added benefit of the possibility of removing the post processing needs associated with traditional nuclear component manufacturing. The microstructure of components built using laser powder bed fusion has been shown to be greatly affected by the build parameters. By altering the laser power, laser velocity, and the spot size the microstructure and, possibly, nanoscale partitioning may be tailored. In this study, nanoscale partitioning was confirmed to be the result of an abrupt …


Rare Earth-Doped Glass-Ceramic Scintillators As X-Ray Flat Panel Detector Substrates, Austin M. Thomas May 2021

Rare Earth-Doped Glass-Ceramic Scintillators As X-Ray Flat Panel Detector Substrates, Austin M. Thomas

Masters Theses

Digital radiography (DR) is an important two-dimensional imaging technique in the field of medicine that utilizes x-rays to form a digital image. DR employs a flat panel detector that converts incident x-rays, that have passed through the subject, to an electrical signal, which is used to create a digital image. The conversion from x-rays to electrical signals can be done either directly or indirectly. The direct method involves the x-rays being converted to an electrical signal via an array of semiconductors. The indirect method utilizes scintillators to absorb the x-rays and produce light in the visible spectrum, which is then …


Modeling Of Dislocation Channel Formation And Evolution In Irradiated Metals, Peter James Doyle Dec 2017

Modeling Of Dislocation Channel Formation And Evolution In Irradiated Metals, Peter James Doyle

Masters Theses

Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. Based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopy (TEM) …


The Development Of Cesium Calcium Bromo-Iodide Scintillator For X-Ray And Gamma Ray Detection, Matthew Starr Loyd Dec 2017

The Development Of Cesium Calcium Bromo-Iodide Scintillator For X-Ray And Gamma Ray Detection, Matthew Starr Loyd

Masters Theses

CsCaI3:Eu [cesium calcium iodide doped with europium] is a promising scintillator material that can be grown from the melt, but undergoes a tetragonal to orthorhombic phase transition upon cooling at 255 °C [degrees Celsius], causing twinning and cloudiness. The purpose of this work is to suppress this solid to solid phase transition in the CsCaI3:Eu scintillator, which has a light yield of ~40000 ph/Mev and energy resolution at 662keV of ~4%, by halide replacement to form the compound CsCaBrxI3-x:Eu [cesium calcium bromo-iodide doped with europium]. Crystals 8 cm3 [cubic centimeters] in …


Dewetting Properties Of Ag-Ni Alloy Thin Films, Benjamin Scott Wolf Aug 2017

Dewetting Properties Of Ag-Ni Alloy Thin Films, Benjamin Scott Wolf

Masters Theses

In this study, pulsed laser induced dewetting of both patterned and continuous Nickel (Ni)-Silver(Ag) thin films was investigated extensively as a novel way to perform directed assembly of nano-particles. First, continuous Ni-Ag thin film dewetting was studied on both bulk and TEM (Transmission electron microscope) membrane substrates at a variety of compositions to better understand the dewetting dynamics of the Ni-Ag system. Then, patterned Ni-Ag thin film dewetting was studied on both bulk and TEM membrane substrates to understand how different patterns and thin film configurations effect nano-particle distribution and formation. All of this work was done in anticipation of …


End-Capping Star-Like Polycaprolactone With Different Functional Groups And The Interaction With Smooth Muscle Cells, Qingya Zeng May 2017

End-Capping Star-Like Polycaprolactone With Different Functional Groups And The Interaction With Smooth Muscle Cells, Qingya Zeng

Masters Theses

Polycaprolactone (PCL) is a PDA-approved biodegradable polymer with excellent biocompatibility and flexibility. My work has been designed to find out how different functional end groups in star-like PCL samples affect the surface properties (such as hydrophilicity, morphology) and bulk properties (such as thermal, mechanical, rheological properties, and crystallization), and consequently the behavior and functions of primary rat aortic smooth muscle cells (SMCs).

I focused on the synthesis of PCL with different functional groups and their characterizations. In chapter 2, PCL samples with four or six hydroxyl end groups were synthesized with different molecular weights ranging from 8,000 to 30,000 g/mol …


Processing-Property-Structure Relationships Of Carbonaceous Materials Derived From Renewable Lignin Products, Valerie García-Negrón May 2017

Processing-Property-Structure Relationships Of Carbonaceous Materials Derived From Renewable Lignin Products, Valerie García-Negrón

Masters Theses

Efforts to effectively use lignin, a by-product of paper and biofuels production, have been carried out for several decades. This renewable resource has potential for use as a carbonaceous material due to its aromatic structure and high carbon content, reminiscent of graphite. The search for new carbon-based materials is extremely active, because they are necessary components in many applications, such as energy storage, electronics, catalysis, and lubricants. Traditional carbon-based materials are derived or mined from petroleum or coal, thus, contributing to pollution, national security risks, and anthropogenic climate change. Lignin, a carbon-rich component found in the tissues of vascular plants, …


Development Of Lignin Carbon Fiber And Reinforced Composites, Nathan Kieran Meek Dec 2016

Development Of Lignin Carbon Fiber And Reinforced Composites, Nathan Kieran Meek

Masters Theses

The aim of this work is to develop lignin carbon fiber for composite applications. This included mechanical testing of single lignin carbon fiber (LCF), interfacial shear strength determination for LCF-resin systems using single fiber fragmentation, x-ray diffraction for the evaluation of microstructural parameters, and finally composite manufacturing and testing. Through these focused areas of analysis, the carbon fiber is thoroughly characterized and composite performance is evaluated. This effort was a collaboration with the Center for Renewable Carbon (CRC) and the Civil and Environmental Engineering Department. LCF produced by the CRC resulted in fibers having tensile strength of 250-800 MPa and …


Lignin Maximization: Analyzing The Impact Of Different Feedstocks And Feedstock Ratios Using Organosolv Fractionation, Marc Banholzer Dec 2016

Lignin Maximization: Analyzing The Impact Of Different Feedstocks And Feedstock Ratios Using Organosolv Fractionation, Marc Banholzer

Masters Theses

Over-exploitation of fossil fuels coupled with increasing pressure to reduce carbon emissions are prompting a transition from conventional petrochemical feedstocks to sustainable and renewable sourced carbon. The use of lignocellulosic biomass as a feedstock for integrated biorefining is of current high interest, as separation into its component parts affords process streams of cellulose, hemicellulose and lignin, each of which can serve as a starting point for the production of biobased chemicals and fuels. Given the large number of potential sources of lignocellulosic feedstocks, the biorefinery will need to adapt to the supplies available over a normal growing season. Of particular …


Fluorochlorozirconate Glass Ceramics For Computed Radiography, Adam Wesley Evans Aug 2016

Fluorochlorozirconate Glass Ceramics For Computed Radiography, Adam Wesley Evans

Masters Theses

Heat treating fluorochlorozirconate (FCZ) glasses nucleates nanocrystals in the glass matrix, resulting in a glass ceramic that has optical properties suitable for use as a medical imaging plate. As the temperature of heat treatment rises, the resulting FCZ glass-ceramic becomes increasingly more opaque as the size of the orthorhombic phase BaCl­2[barium chloride] nanocrystals grow within the glass matrix. This opaqueness negatively affects imaging. The effect of adding Fe3+[iron] on the valence state of zirconium and overall glass quality was investigated.

Samples were synthesized and characterized with differential scanning calorimetry to determine the temperature of the orthorhombic …


Evaluation Of The Potential For Weld-Related Cracking In Cast 20cr-32ni-1nb Heat-Resistant Stainless Steel, John William Bohling Aug 2016

Evaluation Of The Potential For Weld-Related Cracking In Cast 20cr-32ni-1nb Heat-Resistant Stainless Steel, John William Bohling

Masters Theses

Steam reforming of hydrocarbons is an important process for the production of hydrogen for industrial needs, such as ammonia synthesis. Due to the high temperature conditions (700 °C–900 °C), reformer furnace components require materials with excellent creep properties and thus highly alloyed austenitic stainless steels are typically employed. For reformer outlet manifolds, a cast, heat-resistant stainless steel with the composition 20Cr-32Ni-1Nb (ASTM A351 Grade CT15C) is widely used. However, after service exposure this alloy exhibits problems with liquation cracking in the base metal heat-affected zone (HAZ) during repair welding. In the work presented herein, two heats of material from centrifugally-cast …


Thermal Characteristics Of Lithium Indium Diselenide And Lithium Indium Gallium Diselenide Neutron Detection Crystals, Dustin Carroll Giltnane May 2016

Thermal Characteristics Of Lithium Indium Diselenide And Lithium Indium Gallium Diselenide Neutron Detection Crystals, Dustin Carroll Giltnane

Masters Theses

Tracking special nuclear materials (SNM) has never been more important than in the 21st century where information is transferred rapidly around the globe. Tracking SNM is important to nuclear power, weapons, medicine, and science. Neutron and gamma ray detection are the primary methods of detecting SNM. Increased movement and availability of SNM have increased the demand for radiation detection systems beyond the capacity of traditional neutron detection technologies (3He) [Helium three]. Many alternative neutron detection materials are being considered, including 6LiInSe2 [Lithium Indium Diselenide grown with lithium enriched in lithium six] and its derivative 6 …


Modeling And Experimental Investigation On The Influence Of Radiation Defects On Helium Behavior In Bcc Iron, Zuya Huang May 2016

Modeling And Experimental Investigation On The Influence Of Radiation Defects On Helium Behavior In Bcc Iron, Zuya Huang

Masters Theses

Fe-based alloys are important structural materials for both fission and fusion energy. For fusion applications, the challenges of radiation-induced changes in microstructure, properties and performance is further challenged by the concomitant production of helium from (n, alpha) nuclear reactions and fusion reactions. Due to the lack of a volumetric, high flux 14-MeV neutron source, studying these phenomena require the use of computational materials modeling and novel experimental methods. In this thesis, molecular dynamics (MD) simulations was used to investigate the synergistic interactions of helium with prismatic dislocation loops characteristic of those observed in neutron irradiated iron to determine how the …


Cell Contraction, De-Adhesion, And Shape Effects Investigated By Cohesive Model With Finite Element Simulations, Margarita Vladimirovna Semenova Petrova May 2016

Cell Contraction, De-Adhesion, And Shape Effects Investigated By Cohesive Model With Finite Element Simulations, Margarita Vladimirovna Semenova Petrova

Masters Theses

Cell adhesion is a complex mechanism, and different factors control this process including surface morphology, chemical, and mechanical interactions. These aspects are usually combined to achieve robust adhesion between surfaces. The later stage in bio-adhesion process involves the formation of molecular bonds through diffusion or interpenetration of molecules at the interface. In order to create contact, cells sense their physical environment by applying mechanical forces or responding to them via traction force. The force is transmitted through cell skeleton. However, how this force is transmitted is mostly unknown. Also, there are still many open questions about fracture mechanism in bio-adhesive …


Magnetron Sputtering And Corrosion Of Ti-Al-C And Cr-Al-C Coatings For Zr-Alloy Nuclear Fuel Cladding, Devin Alan Roberts May 2016

Magnetron Sputtering And Corrosion Of Ti-Al-C And Cr-Al-C Coatings For Zr-Alloy Nuclear Fuel Cladding, Devin Alan Roberts

Masters Theses

The disaster at the Fukushima Daiichi Nuclear Power Plant in March 2011 bought renewed focus to the issue of corrosion in nuclear fuel cladding applications. This thesis reports on the background behind these issues, the investigation strategy, and the analysis of experiments focused on mitigating oxidation of Zr-alloy fuel cladding. This thesis seeks to develop magnetron sputtered Ti-Al-C and Cr-Al-C coatings for Zr-alloy substrates and characterize the as-deposited and corroded samples.

Ti-Al-C and Cr-Al-C coatings were deposited onto ZIRLO, Si, and Al2O3 [Aluminum Oxide] substrates under various sputtering conditions. A combinatorial sputtering method was employed to refine …


Study Of Magneto-Optical Behaviors At A Ferromagnetic/Organic Semiconductor Interface, Jeremy Tyler Tisdale May 2016

Study Of Magneto-Optical Behaviors At A Ferromagnetic/Organic Semiconductor Interface, Jeremy Tyler Tisdale

Masters Theses

Organic materials have been widely studied for the last 20 years to use for photovoltaic applications. Organic photovoltaic materials have shown promising properties for solar cells, such as very low cost, flexibility, easy fabrication methods, etc. Although power conversion efficiencies for organic-based solar cells have exponentially grown in the last decade, up to about 13% in early 2016, it is still optimal to increase these efficiencies. In order to raise efficiencies, it is important to study the fundamental mechanisms inside organic materials that lead to photovoltaic properties. This thesis reports the magneto-optical effects on the p-type organic semiconductor, tetracene, from …


Kinetic And Thermodynamic Modeling Of Long Term Phase Stability In Alloy 800h Subjected To Lwr Core Conditions, Wayne Ethan Pratt Dec 2015

Kinetic And Thermodynamic Modeling Of Long Term Phase Stability In Alloy 800h Subjected To Lwr Core Conditions, Wayne Ethan Pratt

Masters Theses

An in depth literature review of Incoloy Alloy 800H was conducted and presented to summarize the current understanding of microstructural evolution under irradiation and secondary phase precipitate stability. Due to a lack of radiation induced segregation (RIS) data for Alloy 800H, Isopleth sections varying Cr, Ni, Ti, and Si were generated from a computational thermodynamics approach using ThermoCalc and analyzed to compensate for knowledge related to radiation induced precipitates (RIP’s). These isopleths were analyzed for a composition range based off previous knowledge of RIS tendencies in austenitic stainless steels. Analysis of four major binary phase diagrams and complex phase diagrams …


Incorporation Of High-K Hfo2 Thin Films In A-Igzo Thin Film Transistor Devices, Aaron Hamilton Bales Dec 2015

Incorporation Of High-K Hfo2 Thin Films In A-Igzo Thin Film Transistor Devices, Aaron Hamilton Bales

Masters Theses

In this study, HfO2 [hafnium oxide] thin films are investigated extensively as part of indium gallium zinc oxide (IGZO) thin film transistor (TFT) devices. They are incorporated into the TFTs, both as a gate insulator and a passivation layer. First, the HfO2 [hafnium oxide] films themselves are investigated through an annealing study and through I-V and C-V measurements. Then, HfO2 [hafnium oxide] is suggested as a replacement for commonly used SiO2 [silicon dioxide] gate insulator, as it has a dielectric constant that is 4 – 6 times higher. This higher dielectric constant allows for comparable TFT performance at a lower …