Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

University of Central Florida

CIGS2

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Zinc Cadmium Sulphide And Zinc Sulphide As Alternative Heterojunction Partners For Cigs2 Solar Cells, Bhaskar Kumar Jan 2007

Zinc Cadmium Sulphide And Zinc Sulphide As Alternative Heterojunction Partners For Cigs2 Solar Cells, Bhaskar Kumar

Electronic Theses and Dissertations

Devices with ZnCdS/ZnS heterojunction partner layer have shown better blue photon response due to higher band gap of these compounds as compared to devices with CdS heterojunction partner layer. CdS heterojunction partner layer has shown high photovoltaic conversion efficiencies with CIGS absorber layer while efficiencies are lower with CuIn1-xGaxS2 (CIGS2). A negative conduction band offset has been observed for CdS/CIGS2 as compared to near flat conduction band alignment in case of CdS/CIGS devices, which results in higher interface dominated recombination. Moreover, it has been predicted that optimum band offsets for higher efficiency solar cells may be achieved for cells with …


Solar Driven Photoelectrochemical Water Splitting For Hydrogen Generation Using Multiple Bandgap Tandem Of Cigs2 Pv Cells And Thin Film Photocatalyst, Anant Jahagirdar Jan 2005

Solar Driven Photoelectrochemical Water Splitting For Hydrogen Generation Using Multiple Bandgap Tandem Of Cigs2 Pv Cells And Thin Film Photocatalyst, Anant Jahagirdar

Electronic Theses and Dissertations

The main objective of this research was to develop efficient CuIn1-xGaxS2 (CIGS2)/CdS thin film solar cells for photoelectrochemical (PEC) water splitting to produce very pure hydrogen and oxygen. Efficiencies obtained using CIGS2 have been lower than those achieved using CuInSe2 and CuIn1-xGaxSe2. The basic limitation in the efficiencies is attributed to lower open circuit voltages with respect to the bandgap of the material. Presently, the main mechanism used to increase the open circuit voltage of these copper chalcopyrites (CuInSe2 and CuInS2) is the addition of gallium. However, addition of gallium has its own challenges. This research was intended to (i) …