Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

PDF

Core-shell nanoparticles

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

A Study Of Manganese And Cobalt Incorporated Nickel Oxide Based Core-Shell Magnetic Nanoparticles, Samiul Hasan Dec 2017

A Study Of Manganese And Cobalt Incorporated Nickel Oxide Based Core-Shell Magnetic Nanoparticles, Samiul Hasan

MSU Graduate Theses

The synthesis along with the structural and magnetic properties of manganese (Mn) and cobalt (Co) -incorporated nickel oxide (NiO) inverted core-shell nanoparticles (CSNs) were investigated. The primary objective of this study was to determine the effect of substitution of nickel (Ni) by transition metal ions (Mn2+/Co2+) in affecting the magnetic properties of the resultant CSNs. The core of the CSNs is comprised of NiO and the shell constitutes a Nix(Mn/Co)1-xO phase. The synthesis of the CSNs was accomplished in two steps: first, NiO nanoparticles were synthesized using a thermal decomposition method. In …


Multifunctional Transition Metal Oxide Core Shell Magnetic Nanoparticles, Mahmud Reaz May 2017

Multifunctional Transition Metal Oxide Core Shell Magnetic Nanoparticles, Mahmud Reaz

MSU Graduate Theses

Oxide core-shell nanoparticles (CSNPs) have attracted considerable interest for their multifunctional properties. Luminescent ZnO, ferroelectric BaTiO3, and inverse spinel iron oxide can be exploited to develop magneto-luminescent and multiferroic nanomaterials. The novel sonochemical method has been used to synthesize the nanomaterials. Atomic-scale spectroscopy establishes the core-shell nature and multifunctional properties of the nanomaterials. Magnetic hysteresis (coercivity, remnant, and saturation magnetization) and temperature dependent data indicate the key structural difference between the oxidized and reduced ZnO/iron oxide CSNPs. Variation in the coercive field and remnant and saturation magnetization further confirms the presence of different iron oxides in the shell region. Temperature …


Synthesis And Electrocatalytic Properties Of Ni-Pd/C Catalysts With Pd-Enriched Surface, Yu-Mei Chen, Zhi-Xiu Liang, Sheng-Li Chen Nov 2009

Synthesis And Electrocatalytic Properties Of Ni-Pd/C Catalysts With Pd-Enriched Surface, Yu-Mei Chen, Zhi-Xiu Liang, Sheng-Li Chen

Journal of Electrochemistry

The Ni-Pd alloy catalysts with Pd-enriched surface were synthesized through a modified polyol process.The synthesized materials were investigated by XRD and electrochemical methods,and tested as electrocatalysts for CH3OH-tolerant oxygen reduction.The results indicated that the synthesized Ni-Pd nanoparticles possess multiple phases containing Pd-Ni alloy and pure Ni.Comparing with Pd/C,the prepared Ni-Pd/C nanoparticles exhibited better resolved voltammetric peaks between the hydrogen absorption and adsorption,and positively shifted current peaks for the reduction of Pd oxide.The prepared Ni-Pd alloys with Pd-enriched surface have significantly enhanced ORR activity and improved CH3OH tolerance as comparing with Pd/C catalysts.