Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Entire DC Network

Advancements And Challenges In Additively Manufactured Functionally Graded Materials: A Comprehensive Review, Suhas Alkunte, Ismail Fidan, Vivekanand Naikwadi, Shamil Gudavasov, Mohammad Alshaikh Ali, Mushfig Mahmudov, Seymur Hasanov, Muralimohan Cheepu Jan 2024

Advancements And Challenges In Additively Manufactured Functionally Graded Materials: A Comprehensive Review, Suhas Alkunte, Ismail Fidan, Vivekanand Naikwadi, Shamil Gudavasov, Mohammad Alshaikh Ali, Mushfig Mahmudov, Seymur Hasanov, Muralimohan Cheepu

Engineering Technology Faculty Publications

This paper thoroughly examines the advancements and challenges in the field of additively manufactured Functionally Graded Materials (FGMs). It delves into conceptual approaches for FGM design, various manufacturing techniques, and the materials employed in their fabrication using additive manufacturing (AM) technologies. This paper explores the applications of FGMs in diverse fields, including structural engineering, automotive, biomedical engineering, soft robotics, electronics, 4D printing, and metamaterials. Critical issues and challenges associated with FGMs are meticulously analyzed, addressing concerns related to production and performance. Moreover, this paper forecasts future trends in FGM development, highlighting potential impacts on diverse industries. The concluding section summarizes …


Nondestructive Evaluation Of 3d Printed, Extruded, And Natural Polymer Structures Using Terahertz Spectroscopy And Imaging, Alexander T. Clark May 2022

Nondestructive Evaluation Of 3d Printed, Extruded, And Natural Polymer Structures Using Terahertz Spectroscopy And Imaging, Alexander T. Clark

Dissertations

Terahertz (THz) spectroscopy and imaging are considered for the nondestructive evaluation (NDE) of various three-dimensional (3D) printed, extruded, and natural polymer structures. THz radiation is the prime candidate for many NDE challenges due to the added benefits of safety, increased contrast and depth resolution, and optical characteristic visualization when compared to other techniques. THz imaging, using a wide bandwidth pulse-based system, can evaluate the external and internal structure of most nonconductive and nonpolar materials without any permanent effects. NDE images can be created based on THz pulse attributes or a material’s spectroscopic characteristics such as refractive index, attenuation coefficient, or …


Impact Of Grain Orientation And Phase On Volta Potential Differences In An Additively Manufactured Titanium Alloy, Jake T. Benzing, Olivia O. Maryon, Nik Hrabe, Paul H. Davis, Michael F. Hurley, Frank W. Delrio Feb 2021

Impact Of Grain Orientation And Phase On Volta Potential Differences In An Additively Manufactured Titanium Alloy, Jake T. Benzing, Olivia O. Maryon, Nik Hrabe, Paul H. Davis, Michael F. Hurley, Frank W. Delrio

Materials Science and Engineering Faculty Publications and Presentations

This work introduces a method for co-localized multi-modal imaging of sub-μm features in an additively manufactured (AM) titanium alloy. Ti-6Al-4V parts manufactured by electron beam melting powder bed fusion were subjected to hot isostatic pressing to seal internal porosity and machined to remove contour–hatch interfaces. Electron microscopy and atomic force microscopy-based techniques (electron backscatter diffraction and scanning Kelvin probe force microscopy) were used to measure and categorize the effects of crystallographic texture, misorientation, and phase content on the relative differences in the Volta potential of α-Ti and β-Ti phases. Given the tunability of additive manufacturing processes, …


Additively Manufactured Parametric Universal Clip-System: An Open Source Approach For Aiding Personal Exposure Easurement In The Breathing Zone, Kirsi Kukko, Jan Sher Akmal, Anneli Kangas, Mika Salmi, Roy Björkstrand, Anna-Kaisa Viitanen, Jouni Partanen, Joshua M. Pearce Sep 2020

Additively Manufactured Parametric Universal Clip-System: An Open Source Approach For Aiding Personal Exposure Easurement In The Breathing Zone, Kirsi Kukko, Jan Sher Akmal, Anneli Kangas, Mika Salmi, Roy Björkstrand, Anna-Kaisa Viitanen, Jouni Partanen, Joshua M. Pearce

Michigan Tech Publications

Design for additive manufacturing is adopted to help solve problems inherent to attaching active personal sampler systems to workers for monitoring their breathing zone. A novel and parametric 3D printable clip system was designed with an open source Computer-aided design (CAD) system and was additively manufactured. The concept was first tested with a simple clip design, and when it was found to be functional, the ability of the innovative and open source design to be extended to other applications was demonstrated by designing another tooling system. The clip system was tested for mechanical stress test to establish a minimum lifetime …


A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox Dec 2016

A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox

Electronic Theses and Dissertations

We explored the capabilities of additive manufacturing using a photo-cured jetted material 3D printer to manufacture a milli-microfluidic device with direct application in microalgae Dunaliella sp growth and intracellular compounds biosynthesis tests. A continuous microbioreactor for microalgae culture was CAD designed and successfully built in 1 hour and 49 minutes using black photopolymer cured by UV and a support material. The microreactor was made up of 2 parts including the bioreactor itself and a microchannel network for culture media fluids and microalgae. Both parts were assembled to form a single unit. Additional optical and auxiliar components were added. An external …


3d Printed Bone Supplement Materials, Azem Khalifa Yahamed Apr 2016

3d Printed Bone Supplement Materials, Azem Khalifa Yahamed

Dissertations

Three-dimensional (3D) printing is an advanced rapid technology that can be used to make human bone substitutes with exact shape and designed structures, based on models created from actual individual bone medical Digital Imaging and Communications in Medicine (DICOM) images. Biocompatible polymers have been selected for 3D printing of human bone structures. The thermoplastics were 3D printed with Fused Deposition Modeling (FDM) are Acrylate Butadiene Styrene (ABS), Polylactic Acid (PLA) and ULTEM 9085 (a polyetherimide). The polyamide PA 2200 was 3D printed using Selective Laser Sintering (SLS). Digital ABS (a crosslinked acrylic polymer) was 3D printed using PolyJet Technology. These …