Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

High Capacity Silicon Electrodes With Nafion As Binders For Lithium-Ion Batteries, Jiagang Xu, Qinglin Zhang, Yang-Tse Cheng Dec 2015

High Capacity Silicon Electrodes With Nafion As Binders For Lithium-Ion Batteries, Jiagang Xu, Qinglin Zhang, Yang-Tse Cheng

Chemical and Materials Engineering Faculty Publications

Silicon is capable of delivering a high theoretical specific capacity of 3579 mAh g−1 which is about 10 times higher than that of the state-of-the-art graphite based negative electrodes for lithium-ion batteries. However, the poor cycle life of silicon electrodes, caused by the large volumetric strain during cycling, limits the commercialization of silicon electrodes. As one of the essential components, the polymeric binder is critical to the performance and durability of lithium-ion batteries as it keeps the integrity of electrodes, maintains conductive path and must be stable in the electrolyte. In this work, we demonstrate that electrodes consisting of …


Inkjet Printed Thin Film Electrodes For Lithium-Ion Batteries, Stephen D. Lawes Oct 2015

Inkjet Printed Thin Film Electrodes For Lithium-Ion Batteries, Stephen D. Lawes

Electronic Thesis and Dissertation Repository

With the miniaturization of wireless electronics, the demand for ever-smaller energy storage devices has increased. Thin film batteries can meet this need by providing higher energy densities at smaller scales than conventional lithium-ion batteries. However, the fabrication of thin films batteries by vapor deposition methods typically involves expensive equipment and high temperatures, which limits their commercial application. This thesis reports the development of an inexpensive inkjet printing method of fabricating thin film electrodes for thin film lithium-ion batteries. Inks containing various electrode materials were first developed and optimized in terms of physical properties to ensure ideal jetting conditions. Then, thin …


Interstitial Silicon Ions In Rutile Tio2 Crystals, Eric M. Golden, Nancy C. Giles, Shan Yang, Larry E. Halliburton Apr 2015

Interstitial Silicon Ions In Rutile Tio2 Crystals, Eric M. Golden, Nancy C. Giles, Shan Yang, Larry E. Halliburton

Faculty Publications

Electron paramagnetic resonance (EPR) is used to identify a new and unique photoactive silicon-related point defect in single crystals of rutile TiO2. The importance of this defect lies in its assignment to interstitial silicon ions and the unexpected establishment of silicon impurities as a major hole trap in TiO2. Principal g values of this new S=1/2 center are 1.9159, 1.9377, and 1.9668 with principal axes along the [¯110],[001], and [110] directions, respectively. Hyperfine structure in the EPR spectrum shows the unpaired spin interacting equally with two Ti nuclei and unequally with two Si nuclei. These silicon …


Study Of Millisecond Laser Annealing On Ion Implanted Soi And Application To Scaled Finfet Technology, Tyler J. Michalak Jan 2015

Study Of Millisecond Laser Annealing On Ion Implanted Soi And Application To Scaled Finfet Technology, Tyler J. Michalak

Legacy Theses & Dissertations (2009 - 2024)

The fabrication of metal-oxide-semiconductor field effect transistors (MOSFET) requires the engineering of low resistance, low leakage, and extremely precise p-n junctions. The introduction of finFET technology has introduced new challenges for traditional ion implantation and annealing techniques in junction design as the fin widths continue to decrease for improved short channel control. This work investigates the use of millisecond scanning laser annealing in the formation of n-type source/drain junctions in next generation MOSFET.


Synthesis, Structure, Properties And Applications Of Nanoporous Silicon And Palladium, Xu Jiang Jan 2015

Synthesis, Structure, Properties And Applications Of Nanoporous Silicon And Palladium, Xu Jiang

Theses and Dissertations--Chemical and Materials Engineering

Nanoporous (np) materials with pore size below 100 nano-meters exist naturally in biological and mineral structures, and synthetic np materials have been used industrially for centuries. Np materials have attracted significant research interest in recent decades, as the development of new characterization techniques and nanotechnology allow the observation and design of np materials at a new level. This study focuses on two np materials: nanoporous silicon (np-Si) and nanoporous palladium (np-Pd).

Silicon (Si), because of its high capacity to store lithium (Li), is increasingly becoming an attractive candidate as anode material for Li ion batteries (LIB). One significant problem with …