Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Entire DC Network

Introduction To Data-Driven Systems For Plastics And Composites Manufacturing, Saeed Farahani, Srikanth Pilla, Yun Zhang, Fausto Tucci May 2023

Introduction To Data-Driven Systems For Plastics And Composites Manufacturing, Saeed Farahani, Srikanth Pilla, Yun Zhang, Fausto Tucci

Mechanical Engineering Faculty Publications

Applications of high-performance plastics and composites have widely been expanded to various industries due to their superior properties, such as high strength-to-weight ratio, chemical resistance, and thermal/electrical insulation. However, the numerous possible combinations of polymers and reinforcements/fillers, the variability of these materials, and their complex manufacturing processes pose challenges in terms of efficiently developing new plastics and composites, accurately modeling their properties, and effectively monitoring and controlling their manufacturing processes. Integrating data-driven techniques, such as machine learning, artificial intelligence, and big data analytics, is a promising pathway to overcome these challenges as it is demonstrated by the state-of-the-art research works …


Numerical Investigation On The Effect Of Spectral Radiative Heat Transfer Within An Ablative Material, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin Dec 2021

Numerical Investigation On The Effect Of Spectral Radiative Heat Transfer Within An Ablative Material, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

The spectral radiative heat flux could impact the material response. In order to evaluate it, a coupling scheme between KATS - MR and P1 approximation model of radiation transfer equation (RTE) is constructed and used. A Band model is developed that divides the spectral domain into small bands of unequal widths. Two verification studies are conducted: one by comparing the simulation computed by the Band model with pure conduction results and the other by comparing with similar models of RTE. The comparative results from the verification studies indicate that the Band model is computationally efficient and can be used to …


Fully Coupled Internal Radiative Heat Transfer For The 3d Material Response Of Heat Shield, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin Jul 2021

Fully Coupled Internal Radiative Heat Transfer For The 3d Material Response Of Heat Shield, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

The radiative transfer equation (RTE) is strongly coupled to the material response code KATS. A P-1 approximation model of RTE is used to account for radiation heat transfer within the material. First, the verification of the RTE model is performed by comparing the numerical and analytical solutions. Next, the coupling scheme is validated by comparing the temperature profiles of pure conduction and conduction coupled with radiative emission. The validation study is conducted on Marschall et al. cases (radiant heating, arc-jet heating, and space shuttle entry), 3D Block, 2D IsoQ sample, and Stardust Return Capsule. The validation results agree well for …


Wetting And Brazing Of Yig Ceramics Using Ag–Cuo–Tio2 Metal Filler, Wanqi Zhao, Shuye Zhang, Jian Yang, Tiesong Lin, Dusan P. Sekulic, Peng He Jan 2021

Wetting And Brazing Of Yig Ceramics Using Ag–Cuo–Tio2 Metal Filler, Wanqi Zhao, Shuye Zhang, Jian Yang, Tiesong Lin, Dusan P. Sekulic, Peng He

Mechanical Engineering Faculty Publications

The wetting and brazing of Y3Fe5O12 (YIG) ceramics with a Ag–8CuO–2TiO2 filler was investigated for the first time. For comparison, the wettability of a Ag–10CuO filler on YIG ceramics was similarly investigated. The Ag–8CuO–2TiO2 filler has an equilibrium contact angle of approximately 31 °C on the YIG substrate at 1000 °C; thus, its wettability is excellent. Moreover, its wettability exceeds that of Ag–10CuO. The microstructure and the interfacial structure between the filler and the substrate were determined using scanning electron microscopy, X-ray diffraction, EPMA and transmission electron microscopy. The liquid Ag–8CuO–2TiO2 filler …


Laser Powder Bed Fusion Of Nitihf High-Temperature Shape Memory Alloy: Effect Of Process Parameters On The Thermomechanical Behavior, Mohammadreza Nematollahi, Guher P. Toker, Keyvan Safaei, Alejandro Hinojos, S. Ehsan Saghaian, Othmane Benafan, Michael J. Mills, Haluk E. Karaca, Mohammad Elahinia Nov 2020

Laser Powder Bed Fusion Of Nitihf High-Temperature Shape Memory Alloy: Effect Of Process Parameters On The Thermomechanical Behavior, Mohammadreza Nematollahi, Guher P. Toker, Keyvan Safaei, Alejandro Hinojos, S. Ehsan Saghaian, Othmane Benafan, Michael J. Mills, Haluk E. Karaca, Mohammad Elahinia

Mechanical Engineering Faculty Publications

Laser powder bed fusion has been widely investigated for shape memory alloys, primarily NiTi alloys, with the goal of tailoring microstructures and producing complex geometries. However, processing high temperature shape memory alloys (HTSMAs) remains unknown. In our previous study, we showed that it is possible to manufacture NiTiHf HTSMA, as one of the most viable alloys in the aerospace industry, using SLM and investigated the effect of parameters on defect formation. The current study elucidates the effect of process parameters (PPs) on the functionality of this alloy. Shape memory properties and the microstructure of additively manufactured Ni-rich NiTiHf alloys were …


Limit Equilibrium Method-Based Shear Strength Prediction For Corroded Reinforced Concrete Beam With Inclined Bars, Yafei Ma, Baoyong Lu, Zhongzhao Guo, Lei Wang, Hailong Chen, Jianren Zhang Mar 2019

Limit Equilibrium Method-Based Shear Strength Prediction For Corroded Reinforced Concrete Beam With Inclined Bars, Yafei Ma, Baoyong Lu, Zhongzhao Guo, Lei Wang, Hailong Chen, Jianren Zhang

Mechanical Engineering Faculty Publications

Shear strength is a widely investigated parameter for reinforced concrete structures. The corrosion of reinforcement results in shear strength reduction. Corrosion has become one of the main deterioration factors in reinforced concrete beam. This paper proposes a shear strength model for beams with inclined bars based on a limit equilibrium method. The proposed model can be applied to both corroded and uncorroded reinforced concrete beams. Besides the tensile strength of longitudinal steel bars, the shear capacity provided by the concrete on the top of the diagonal crack, the tensile force of the shear steel at the diagonal crack, the degradation …


Achieving Superelasticity In Additively Manufactured Niti In Compression Without Post-Process Heat Treatment, Narges Shayesteh Moghaddam, Soheil Saedi, Amirhesam Amerinatanzi, Alejandro Hinojos, Ali Ramazani, Julia Kundin, Michael J. Mills, Haluk E. Karaca, Mohammad Elahinia Jan 2019

Achieving Superelasticity In Additively Manufactured Niti In Compression Without Post-Process Heat Treatment, Narges Shayesteh Moghaddam, Soheil Saedi, Amirhesam Amerinatanzi, Alejandro Hinojos, Ali Ramazani, Julia Kundin, Michael J. Mills, Haluk E. Karaca, Mohammad Elahinia

Mechanical Engineering Faculty Publications

Shape memory alloys (SMAs), such as Nitinol (i.e., NiTi), are of great importance in biomedical and engineering applications due to their unique superelasticity and shape memory properties. In recent years, additive manufacturing (AM) processes have been used to produce complex NiTi components, which provide the ability to tailor microstructure and thus the critical properties of the alloys, such as the superelastic behavior and transformation temperatures (TTs), by selection of processing parameters. In biomedical applications, superelasticity in implants play a critical role since it gives the implants bone-like behavior. In this study, a methodology of improving superelasticity in Ni-rich NiTi components …


Capturing The Competing Influence Of Thermal And Mechanical Loads On The Strain Of Turbine Blade Coatings Via High Energy X-Rays, Albert Manero, Kevin Knipe, Janine Wischek, Carla Meid, John Okasinski, Jonathan Almer, Anette M. Karlsson, Marion Bartsch, Seetha Raghavan Sep 2018

Capturing The Competing Influence Of Thermal And Mechanical Loads On The Strain Of Turbine Blade Coatings Via High Energy X-Rays, Albert Manero, Kevin Knipe, Janine Wischek, Carla Meid, John Okasinski, Jonathan Almer, Anette M. Karlsson, Marion Bartsch, Seetha Raghavan

Mechanical Engineering Faculty Publications

This paper presents findings of synchrotron diffraction measurements on tubular specimens with a thermal barrier coating (TBC) system applied by electron beam physical vapor deposition (EB-PVD), having a thermally grown oxide (TGO) layer due to aging in hot air. The diffraction measurements were in situ while applying a thermal cycle with high temperature holds at 1000 °C and varying internal air cooling mass flow and mechanical load. It was observed that, during high temperature holds at 1000 °C, the TGO strain approached zero if no mechanical load or internal cooling was applied. When applying a mechanical load, the TGO in-plane …


Research And Development Of Powder Brazing Filler Metals For Diamond Tools: A Review, Fei Long, Peng He, Dusan P. Sekulic May 2018

Research And Development Of Powder Brazing Filler Metals For Diamond Tools: A Review, Fei Long, Peng He, Dusan P. Sekulic

Mechanical Engineering Faculty Publications

Powder brazing filler metals (PBFMs) feature a number of comparative advantages. Among others, these include a low energy consumption, an accurate dosage, a good brazeability, a short production time, and a high production efficiency. These filler metals have been used in the aerospace, automobile, and electric appliances industries. The PBFMs are especially suitable for diamond tools bonding, which involves complex workpiece shapes and requires accurate dosage. The recent research of PBFMs for diamond tools is reviewed in this paper. The current applications are discussed. The CuSnTi and Ni-Cr-based PBFMs have been the two commonly used monolayer PBFMs. Thus, the bonding …


Scalable Patterning Using Laser-Induced Shock Waves, Saidjafarzoda Ilhom, Khomidkhodza Kholikov, Peizhen Li, Claire Ottman, Dylan Sanford, Zachary Thomas, Omer San, Haluk E. Karaca, Ali O. Er Apr 2018

Scalable Patterning Using Laser-Induced Shock Waves, Saidjafarzoda Ilhom, Khomidkhodza Kholikov, Peizhen Li, Claire Ottman, Dylan Sanford, Zachary Thomas, Omer San, Haluk E. Karaca, Ali O. Er

Mechanical Engineering Faculty Publications

An advanced direct imprinting method with low cost, quick, and minimal environmental impact to create a thermally controllable surface pattern using the laser pulses is reported. Patterned microindents were generated on Ni50Ti50 shape memory alloys and aluminum using an Nd: YAG laser operating at 1064 nm combined with a suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities, which generate pressure pulses up to a few GPa on the surface, were focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto …


Modeling Of Nitihf Using Finite Difference Method, Nazanin Farjam, Reza Mehrabi, Haluk E. Karaca, Reza Mirzaeifar, Mohammad Elahinia Mar 2018

Modeling Of Nitihf Using Finite Difference Method, Nazanin Farjam, Reza Mehrabi, Haluk E. Karaca, Reza Mirzaeifar, Mohammad Elahinia

Mechanical Engineering Faculty Publications

NiTiHf is a high temperature and high strength shape memory alloy with transformation temperatures above 100oC. A constitutive model based on Gibbs free energy is developed to predict the behavior of this material. Two different irrecoverable strains including transformation induced plastic strain (TRIP) and viscoplastic strain (VP) are considered when using high temperature shape memory alloys (HTSMAs). The first one happens during transformation at high levels of stress and the second one is related to the creep which is rate-dependent. The developed model is implemented for NiTiHf under uniaxial loading. Finite difference method is utilized to solve the proposed equations. …


Selective Laser Melting Of Ni-Rich Niti: Selection Of Process Parameters And The Superelastic Response, Narges Shayesteh Moghaddam, Soheil Saedi, Amirhesam Amerinatanzi, Ehsan Saghaian, Ahmadreza Jahadakbar, Haluk E. Karaca, Mohammad Elahinia Mar 2018

Selective Laser Melting Of Ni-Rich Niti: Selection Of Process Parameters And The Superelastic Response, Narges Shayesteh Moghaddam, Soheil Saedi, Amirhesam Amerinatanzi, Ehsan Saghaian, Ahmadreza Jahadakbar, Haluk E. Karaca, Mohammad Elahinia

Mechanical Engineering Faculty Publications

Material and mechanical properties of NiTi shape memory alloys strongly depend on the fabrication process parameters and the resulting microstructure. In selective laser melting, the combination of parameters such as laser power, scanning speed, and hatch spacing determine the microstructural defects, grain size and texture. Therefore, processing parameters can be adjusted to tailor the microstructure and mechanical response of the alloy. In this work, NiTi samples were fabricated using Ni50.8Ti (at.%) powder via SLM PXM by Phenix/3D Systems and the effects of processing parameters were systematically studied. The relationship between the processing parameters and superelastic properties were investigated …


Influence Of Slm On Compressive Response Of Niti Scaffolds, Narges Shayesteh Moghaddam, Soheil Saedi, Amirhesam Amerinatanzi, Ahmadreza Jahadakbar, Sayed Ehsan Saghaian, Haluk E. Karaca, Mohammad Elahinia Mar 2018

Influence Of Slm On Compressive Response Of Niti Scaffolds, Narges Shayesteh Moghaddam, Soheil Saedi, Amirhesam Amerinatanzi, Ahmadreza Jahadakbar, Sayed Ehsan Saghaian, Haluk E. Karaca, Mohammad Elahinia

Mechanical Engineering Faculty Publications

Porous Nickel-Titanium shape memory alloys (NiTi-SMAs) have attracted much attention in biomedical applications due to their high range of pure elastic deformability (i.e., superelasticity) as well as their bone-level modulus of elasticity (E≈12-20 GPa). In recent years, Selective Laser Melting (SLM) has been used to produce complex NiTi components. The focus of this study is to investigate the superelasticity and compressive properties of SLM NiTi-SMAs. To this aim, several NiTi components with different level of porosities (32- 58%) were fabricated from Ni50.8Ti (at. %) powder via SLM PXM by Phenix/3D Systems, using optimum processing parameter (Laser power-P=250 W, …


Note On The Rate And Energy Efficiency Limits For Additive Manufacturing, Timothy Gutowski, Sheng Jiang, Daniel Cooper, Gero Corman, Michael Hausmann, Jan-Anders Manson, Timo Schudeleit, Konrad Wegener, Matias Sabelle, Jorge Ramos-Grez, Dusan P. Sekulic Oct 2017

Note On The Rate And Energy Efficiency Limits For Additive Manufacturing, Timothy Gutowski, Sheng Jiang, Daniel Cooper, Gero Corman, Michael Hausmann, Jan-Anders Manson, Timo Schudeleit, Konrad Wegener, Matias Sabelle, Jorge Ramos-Grez, Dusan P. Sekulic

Mechanical Engineering Faculty Publications

We review the process rates and energy intensities of various additive processing technologies and focus on recent progress in improving these metrics for laser powder bed fusion processing of metals, and filament and pellet extrusion processing of polymers and composites. Over the last decade, observed progress in raw build rates has been quite substantial, with laser metal processes improving by about 1 order of magnitude, and polymer extrusion processes by more than 2 orders of magnitude. We develop simple heat transfer models that explain these improvements, point to other possible strategies for improvement, and highlight rate limits. We observe a …


Orientation Dependent Compression Behavior Of Co35Ni35Al30 Single Crystals, Peizhen Li, Haluk E. Karaca, Yury I. Chumlyakov Sep 2017

Orientation Dependent Compression Behavior Of Co35Ni35Al30 Single Crystals, Peizhen Li, Haluk E. Karaca, Yury I. Chumlyakov

Mechanical Engineering Faculty Publications

The shape memory effect (SME) and superelasticity (SE) behavior of homogenized Co35Ni35Al30 single crystals were systematically characterized along the [100], [110] and [111] orientations under compression. The shape memory behavior of CoNiAl was found to be highly orientation and stress/temperature dependent. Maximum compressive recoverable strains were 3.98 % in [110], 3 % in [100] and 0.30 % in [111] orientations, respectively. The Co35Ni35Al30 demonstrated a very high superelastic temperature window of more than 350 °C along the [100] and [110] orientations. Moreover, two-way shape memory effect with very low thermal …


Intracellular Nanoparticle Dynamics Affected By Cytoskeletal Integrity, Martha E. Grady, Emmabeth Parrish, Matthew A. Caporizzo, Sarah C. Seeger, Russell J. Composto, David M. Eckmann Mar 2017

Intracellular Nanoparticle Dynamics Affected By Cytoskeletal Integrity, Martha E. Grady, Emmabeth Parrish, Matthew A. Caporizzo, Sarah C. Seeger, Russell J. Composto, David M. Eckmann

Mechanical Engineering Faculty Publications

The cell interior is a crowded chemical space, which limits the diffusion of molecules and organelles within the cytoplasm, affecting the rates of chemical reactions. We provide insight into the relationship between non-specific intracellular diffusion and cytoskeletal integrity. Quantum dots entered the cell through microinjection and their spatial coordinates were captured by tracking their fluorescence signature as they diffused within the cell cytoplasm. Particle tracking revealed significant enhancement in the mobility of biocompatible quantum dots within fibrosarcoma cells versus their healthy counterparts, fibroblasts, as well as in actin destabilized fibroblasts versus untreated fibroblasts. Analyzing the displacement distributions provided insight into …


On The Uniqueness And Sensitivity Of Indentation Testing Of Isotropic Materials, J. K. Phadikar, T. A. Bogetti, Anette M. Karlsson Oct 2013

On The Uniqueness And Sensitivity Of Indentation Testing Of Isotropic Materials, J. K. Phadikar, T. A. Bogetti, Anette M. Karlsson

Mechanical Engineering Faculty Publications

Instrumented indentation is a popular technique to extract the material properties of small scale structures. The uniqueness and sensitivity to experimental errors determine the practical usefulness of such experiments. Here, a method to identify test techniques that minimizes sensitivity to experimental erros is in indentation experiments developed. The methods are based on considering “shape functions,” which are sets of functions that describe the force–displacement relationship obtained during the indentation test. The concept of condition number is used to investigate the relative reliability of various possible dual indentation techniques. Interestingly, it was found that many dual indentation techniques can be as …


On Stresses Induced In A Thermal Barrier Coating Due To Indentation Testing, Jin Yan, Anette M. Karlsson, Marion Bartsch, Xi Chen Feb 2009

On Stresses Induced In A Thermal Barrier Coating Due To Indentation Testing, Jin Yan, Anette M. Karlsson, Marion Bartsch, Xi Chen

Mechanical Engineering Faculty Publications

Instrumented indentation has been suggested as a method to determine interfacial fracture toughness of thermal barrier coatings. However, in a previous experimental study we showed that the results are ambiguous. In this work, we investigate the experimental results by numerical simulations incorporating the material microstructure. In the numerical simulations, based on finite element analyses, the stress fields that are associated with the loading and unloading of the indenter are investigated. By comparing these stress fields to the damage observed in the experimental study, including crack path and interfacial delaminations, we explain key findings from the experimental observations. Our results suggest …


The Effects Of Patch Properties On The Debonding Behavior Of Patched Beam-Plates, Anette M. Karlsson Oct 2000

The Effects Of Patch Properties On The Debonding Behavior Of Patched Beam-Plates, Anette M. Karlsson

Mechanical Engineering Faculty Publications

The debonding characteristics of patched structures are investigated in this study by means of an analytical model. In particular, the effects the lay-up sequence and edge tapering of a carbon-reinforced epoxy patch, as well as the beveling of an aluminum patch, have on the initiation, stability, and extent of the debonding are considered. The results presented show that both the degree of edge-tapering and the patch properties must be carefully selected in order to optimize the patched structure. It is also shown that when designing a patched system, it is important to model the correct boundary and load conditions to …