Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Entire DC Network

Raman Spectroscopic Investigation Of The Speciation Of Uranyl (Vi) And Thorium (Iv) Ions In Chloride-Bearing Aqueous Solutions Under Hydrothermal Conditions, Nadib Akram Dec 2020

Raman Spectroscopic Investigation Of The Speciation Of Uranyl (Vi) And Thorium (Iv) Ions In Chloride-Bearing Aqueous Solutions Under Hydrothermal Conditions, Nadib Akram

MSU Graduate Theses

Raman spectra were acquired for a uranyl chloride aqueous solution at temperatures ranging from 25°C to 500°C at the chloride concentration of 6M and uranium (vi) concentration of 0.05M. The measurements were taken by sealing the sample in a hydrothermal diamond anvil cell (HDAC) which enabled spectra acquisition at non-ambient conditions. The pressure inside the cell was measured by estimating the liquid-vapor homogenization temperature (TH) and using the isochoric equation of state diagram of water. The acquired spectra were then fitted to determine the speciation distribution of the various uranyl chloride species for the mentioned concentration. The developed …


Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness Dec 2020

Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness

MSU Graduate Theses

Atomic Layer Deposition is a method of manufacturing thin film materials. Metal-oxides such as zinc-oxide and aluminum-oxide are particularly interesting candidates for use in microelectronic devices such as tunnel junction barriers, transistors, Schottky diodes, and more. By adopting a 3D Kinetic Monte Carlo model capable of simulating ZnO deposition, the effect of parameters including deposition temperature, chamber pressure, and composition of the initial substrate at the beginning of deposition can be investigated. This code generates two random numbers: One is used to select a chemical reaction to occur from a list of all possible reactions and the second is used …


Synthesis Of Novel Coo/Mnfe2o4 Heterostructured Nanoparticles And The Effects Of Variable Size And Extent Of Overgrowth On Their Magnetic Properties, Mohammad Tauhidul Islam Dec 2020

Synthesis Of Novel Coo/Mnfe2o4 Heterostructured Nanoparticles And The Effects Of Variable Size And Extent Of Overgrowth On Their Magnetic Properties, Mohammad Tauhidul Islam

MSU Graduate Theses

A combination of thermal decomposition and surfactant-assisted synthesis route was utilized to synthesize novel CoO/MnFe2O4 heterostructured nanoparticles. Four samples of varying CoO core size were synthesized with variable extent of overgrowth phase. XRD, XPS, SEM and TEM data show evidence of MnFe2O4 spinel phase overgrowth on CoO rock-salt structured nanoparticles. XPS and magnetic data reveal partial oxidation and formation of Co3O4 phase on 7 nm and 19 nm size CoO-based nanoparticles. The remaining samples having 22 nm and 34 nm dimensions show a higher percentage of FiM materials overgrowth on the …


Design, Discovery, And Characterization Of Single Crystals Of A Topological Semimetal Using A Self-Flux Method, Sudha Krishnan Dec 2020

Design, Discovery, And Characterization Of Single Crystals Of A Topological Semimetal Using A Self-Flux Method, Sudha Krishnan

MSU Graduate Theses

Realization of topological semimetals in the recent past show that ternary intermetallics can exhibit topological phases. This discovery initiated the quest for this novel research. There is a crucial need to discover new materials that manifest these phases for a better understanding of their behavior to utilize them in device technology. Also, Bi compounds have attracted much attention as candidates for topological materials and topological superconductors. In this context, synthesis and characterization of single crystals of a layered transition metal pnictide SmMnBi2, a potential Dirac topological semimetal candidate, is reported. A flux method was utilized to synthesize single crystals of …


The Structural And Magnetic Properties Of Nio/Mn(Ni)-Oxide Magnetic Heterostructured Nanocrystals Synthesized Under Varying Ph Values, Abdullah Al Shafe Aug 2020

The Structural And Magnetic Properties Of Nio/Mn(Ni)-Oxide Magnetic Heterostructured Nanocrystals Synthesized Under Varying Ph Values, Abdullah Al Shafe

MSU Graduate Theses

The role of pH on the structural, morphological, and magnetic properties of hydrothermally synthesized NiO-based magnetic heterostructured nanocrystals (MHNCs) is investigated. The NiO nanocrystals were synthesized using a two-step thermal decomposition process whereas the deposition of the surrounding Mn-based phases was accomplished by hydrothermal means at pH values ranging from 2.4 to 7.0. The resulting heterostructured nanocrystals consist of inverted AFM-FiM NiO/±MnxNi1-xO/±Mn3O4 bimagnetic/trimagnetic systems. A complete characterization of the MHNCs was carried using XRD, TEM, EDS, MPMS magnetometry and XPS analysis. Structural investigations revealed predominantly faceted MHNCs ranging in size from 24-30 nm …


Ractive Md Simulation On The Formation Of Amorphous Alumina Layer Using Atomic Layer Deposition (Ald), Yuxuan Lu Aug 2020

Ractive Md Simulation On The Formation Of Amorphous Alumina Layer Using Atomic Layer Deposition (Ald), Yuxuan Lu

MSU Graduate Theses

In this study, a systematic study has been performed by using the large-scale classical reactive molecular dynamics (MD) simulations to model the Atomic Layer Deposition (ALD) processes that generated tan ultra-thin and sub-nano meter amorphous alumina. The ALD process employed both water pulse and (Trimethyl-Aluminum) TMA precursors deposited onto the surface of an aluminum wetting layer. The study varied the sizes of the substrate and the concentrations of water/hydroxide precursors with a range of operating temperature to design the most favorable configurations for the subsequent TMA precursors to add onto. The role of crystallographic orientation of the Al wetting layer …


Development Of A Cvd Assisted Pld System For Growing Novel Materials, Sinjan Majumder Aug 2020

Development Of A Cvd Assisted Pld System For Growing Novel Materials, Sinjan Majumder

MSU Graduate Theses

The fundamental step for development of novel materials like semiconductors involves stacking of layers of thin films of materials with desired properties on a particular substrate. In order to study the properties of these materials for research purposes in the laboratory, development of a clean fabrication technique is essential. PLD is a technique employed for growing thin films using laser ablation of a target material. CVD is an alternate method used to deposit solid materials from a gaseous phase. However, combining these two techniques can enhance plume, gas and laser interaction to facilitate the growth of novel materials with new …


Performance Of Pld Grown Zno Thin Film As A Thin Film Transistor, Shahidul Asif Aug 2020

Performance Of Pld Grown Zno Thin Film As A Thin Film Transistor, Shahidul Asif

MSU Graduate Theses

The performance of ZnO thin film (grown in different parameters) as a thin film transistor (TFT) is the focus of this study. ZnO is renowned for being n-type semiconductor naturally which was utilized in fabricating a thin film transistor here. This thesis is compared the performance of ZnO thin film transistor by growing the thin film using pulsed laser deposition (PLD) on two slightly different substrates at different temperatures in an optimal 0.1 milli bar oxygen pressure which was later analyzed using other material characterization methods. The substrates were both Si (100) but had different resistivity due to different amount …