Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Entire DC Network

Phase Field Modeling Of Electrodeposition Process In Lithium Metal Batteries, Nihal Acharya Jan 2016

Phase Field Modeling Of Electrodeposition Process In Lithium Metal Batteries, Nihal Acharya

Masters Theses

"One of the main weaknesses in long term performance of conventional lithium batteries is the growth of lithium microstructures on the electrode surface due to an electrochemical process, which can eventually lead to failure of these batteries. Suppressing this microstructure growth is a key in developing new generations of lithium metal batteries (LMBs). In this study, a two-dimensional (2D) phase field model is constructed to understand and determine the parameters controlling formation and evolution of microstructures in LMBs. A Ginzburg-Landau free energy functional, which is a function of concentration of Li+ and applied voltage, and a system consisting of …


Carbon Transfer From Magnesia-Graphite Ladle Refractories To Ultra-Low Carbon Steel, Andrew Arthur Russo Jan 2016

Carbon Transfer From Magnesia-Graphite Ladle Refractories To Ultra-Low Carbon Steel, Andrew Arthur Russo

Masters Theses

"Ultra-low carbon steels are utilized in processes which require maximum ductility. Increases in interstitial carbon lower the ductility of steel; therefore, it is important to examine possible sources of carbon. The refractory ladle lining is one such source. Ladle refractories often contain graphite for its desirable thermal shock and slag corrosion resistance. This graphite is a possible source of carbon increase in ultra-low carbon steels. The goal of this research is to understand and evaluate the mechanisms by which carbon transfers to ultra-low carbon steel from magnesia-graphite ladle refractory.

Laboratory dip tests were performed in a vacuum induction furnace under …


Hybrid Manufacturing Processes For Fusion Welding And Friction Stir Welding Of Aerospace Grade Aluminum Alloys, Megan Alexandra Gegesky Jan 2016

Hybrid Manufacturing Processes For Fusion Welding And Friction Stir Welding Of Aerospace Grade Aluminum Alloys, Megan Alexandra Gegesky

Masters Theses

"Friction stir welding and processing can provide for joints in aerospace grade aluminum alloys that have preferable material properties as compared to fusion welding techniques. Aerospace grade aluminum alloys such as AA2024-T3 and AA7075-T6 are considered non-weldable by traditional fusion welding techniques. Improved mechanical properties over previously used techniques are usually preferable for aerospace applications. Therefore, by combining traditional fusion welding and friction stir processing techniques, it could be plausible to create more difficult geometries in manufactured parts instead of using traditional techniques. While this combination of fusion welding and friction stir processing is not a new technology, its introduction …


Synthesis And Photonic Sintering Of Bioresorbable Zinc Nanoparticle Ink For Transient Electronics Manufacturing, Bikram K. Mahajan Jan 2016

Synthesis And Photonic Sintering Of Bioresorbable Zinc Nanoparticle Ink For Transient Electronics Manufacturing, Bikram K. Mahajan

Masters Theses

"Zinc is an essential 'trace element' that supports immune systems, and is required for DNA synthesis, cell division, and protein synthesis. Zinc nanoparticles (Zn NP) has antibacterial properties and potential to be used in biodegradable printed electronics devices. The research presented here is about the synthesis of Zn NP and their potential use in transient electronics devices. In Paper 1, a technique of room temperature synthesis of Zn NP is reported using ball milling. Controlled amount of PVP was mixed in the solvent to stabilize the Zn particles and minimize cold welding during milling. The size of the produced Zn …


Material Properties Affecting The Penetration Of Metal Targets By Copper Linear Shaped Charges, Kevin Lee Phelps Jan 2016

Material Properties Affecting The Penetration Of Metal Targets By Copper Linear Shaped Charges, Kevin Lee Phelps

Masters Theses

"A linear shaped charge (LSC) is an explosive device used in demolition, aerospace, and in other applications that require the cutting of metal. Users of LSC's typically know the size of shaped charge needed to cut their target but commonly encounter previously untested materials. The motivation for this thesis is to provide an understanding as to what target material properties are good indicators of cutting performance so the selection of LSC can be more efficient. The author found that penetration theories for other types shaped charges were insufficient for the LSC, possibly because of the relatively slow projectile created by …


Thermal Characterization Of Phase Change Materials For Thermal Energy Storage, Rami Mohammad Reda Saeed Jan 2016

Thermal Characterization Of Phase Change Materials For Thermal Energy Storage, Rami Mohammad Reda Saeed

Masters Theses

"The study provides a valuable and useful database for Phase Change Materials (PCMs) for Thermal Energy Storage (TES) applications. Only a few existing studies have provided an overall investigation of thermophysical properties of PCMs in this detailed manner. Several organic PCMs, namely Myristic acid, Capric Acid, Lauryl Alcohol, Palmitic acid and Lauric acid, have been characterized after being carefully selected to cover wide range of TES applications. Insights and information gained from this work will be applied toward the design and modelling of many low temperature thermal energy storage applications. The study experimentally investigated uncertainty of thermal characterization of PCMs …


A Study On Non-Metallic Inclusions In Foundry Steel Process, Marc Leonard Harris Jan 2016

A Study On Non-Metallic Inclusions In Foundry Steel Process, Marc Leonard Harris

Masters Theses

"The effects of sample area and automated SEM/EDS feature analysis parameters (step size, magnification and threshold) on nonmetallic inclusion characterization results has been investigated and optimized. A post-processing program was developed to automatically determine average inclusion chemistry, total element concentrations within inclusions, and for generating joint ternary diagrams with size visualization for representing nonmetallic inclusion populations. Using these tools the evolution of nonmetallic inclusions was examined for 4320 steel at a participating industrial steel foundry. The steel was sampled throughout electric arc furnace melting through ladle refining to the final casting where an in-mold sampling procedure was developed to procure …


Computational Fluid Dynamics (Cfd) Simulations Of Molten Steel Flow Patterns And Particle-Wall Adhesion In Continuous Casting Of Steels, Mahdi Mohammadi-Ghaleni Jan 2016

Computational Fluid Dynamics (Cfd) Simulations Of Molten Steel Flow Patterns And Particle-Wall Adhesion In Continuous Casting Of Steels, Mahdi Mohammadi-Ghaleni

Masters Theses

"In this research, the measurements of clog deposit thickness on the interior surfaces of a continuous casting nozzle were compared with Computational Fluid Dynamics (CFD) predictions of melt flow patterns and particle-wall interactions to identify the mechanisms of nozzle clogging. A hybrid turbulent approach, Detached Eddy Simulation (DES), was configured to simulate both turbulent structures and particle-wall interactions inside the nozzle accurately. For experimental measurements of nozzle clogging, a nozzle received from industry was encased in epoxy and carefully sectioned to allow measurement of the deposit thickness on the internal surfaces of the nozzle. CFD simulations of melt flow patterns …


Synthesis Of Radioactive Nanostructures In A Research Nuclear Reactor, Maria Camila Garcia Toro Jan 2016

Synthesis Of Radioactive Nanostructures In A Research Nuclear Reactor, Maria Camila Garcia Toro

Masters Theses

In this work, the synthesis of radioactive nanostructures by water radiolysis was studied. The irradiation processes were done in the Missouri University of Science and Technology research nuclear reactor (MSTR).

Radioactive gold nanoparticles (AuNPs) were synthesized from aqueous solutions containing the metal salt precursors by radiolysis of water. Seven different samples were irradiated at 200kW of thermal power for 0.5, 1, 3, 5, 10, 30, and 60 minutes. The average sizes of the obtained nanoparticles ranged from 3 nm to 400 nm, it was found that the particle size decreased with the irradiation time. Some agglomerations of particles were found …


Biodegradable Electronic And Optical Devices Toward Temporary Implants, Md Shihab Adnan Jan 2016

Biodegradable Electronic And Optical Devices Toward Temporary Implants, Md Shihab Adnan

Masters Theses

"Implantable biomedical devices have a high potential to revolutionize health care technologies in near future. Implantable devices can be classified as permanent prosthetic devices such as pacemakers or nerve stimulants and temporary devices for intermediate monitoring and control scenario which are still in research phase. In contrast to permanent device, temporary implants lose functionality and become unnecessary after intended operational lifetime which may pose serious electromagnetic and biomedical safety concern, latent complications at the implanted sites and possible ethical issues if not removed from body by an additional surgical operation.

The first paper of this thesis focuses on exploring the …