Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Entire DC Network

Synthesis And Characterization Of Chemically Functionalized Shape Memory Nanofoams For Unattended Sensing Applications, Anna Paola Soliani Dec 2014

Synthesis And Characterization Of Chemically Functionalized Shape Memory Nanofoams For Unattended Sensing Applications, Anna Paola Soliani

All Dissertations

The work in this dissertation is devoted to the synthesis and characterization of novel materials for off-line unattended sensing: shape-memory grafted nanofoams. The fabrication process and characterization of highly efficient, polymeric nanosensor element with the ability to selectively detect analytes and retain memory of specific exposure events is reported. These shape memory nanofoams could potentially act as efficient and highly sensitive coatings for evanescent waveguide-based optical monitoring systems. On exposure to specific analytes, the polymeric coatings locally change their internal structure irreversibly at the nanolevel, affecting the local optical properties such as refractive index. Currently, enrichment polymer layers (EPLs) are …


Microanalysis Of Polymer Chain Diffusion In Heat Seals, Russell Cooper Dec 2014

Microanalysis Of Polymer Chain Diffusion In Heat Seals, Russell Cooper

All Theses

Heat sealing is an integral method for the closure and protection of packaging. Previous work has shown that seal strength is developed by the interdiffusion of polymer chains within heat seals. Heat seals were made between two dissimilar materials. Poly(ethylene-co-acrylic acid) (EAA) was heat sealed to ionomer. Diffusion within the EAA-ionomer heat seals was estimated. The diffusion estimates were then related to resulting seal strength in the EAA-ionomer sealant system. Heated tooling sealing was utilized to make heat seals at 40 psi (275.79 kPa), 0.5 seconds, and a range of temperatures between 180˚F (82.22˚C) and 300˚F (148.89˚C). Scanning electron microscopy …


Fabrication And Characterization Of Magnetic Nanoparticle Composite Membranes, Akeem Cruickshank Dec 2014

Fabrication And Characterization Of Magnetic Nanoparticle Composite Membranes, Akeem Cruickshank

All Theses

To effectively and accurately deliver drugs within the human body, both new designs and components for implantable micropumps are being studied. Designs must ensure high biocompatibility, drug compatibility, accuracy and small power consumption. The focus of this thesis was to fabricate a prototype magnetic nanoparticle membrane for eventual incorporation into a biomedical pump and then determine the relationship between this membrane deflection and applied pneumatic or magnetic force. The magnetic nanoparticle polymer composite (MNPC) membranes in this study were composed of crosslinked polydimethylsiloxane (PDMS) and iron oxide nanoparticles (IONPs). An optimal iron oxide fabrication route was identified and particle size …


Relationship Between Peel Force, Opening Force, And Burst Force For A Semi-Rigid Cup And Lid, Pre- And Post-Retort, Raj Navalakha Dec 2014

Relationship Between Peel Force, Opening Force, And Burst Force For A Semi-Rigid Cup And Lid, Pre- And Post-Retort, Raj Navalakha

All Theses

This research determines if there is any relationship between the peel force, the opening force and the burst force for a semi-rigid cup and lid system, for pre- and post-retort conditions. It also compares the relationship (regression lines) between these forces pre- and post-retort. These seal results were studied by varying the sealing parameters of dwell time and temperature while keeping the pressure constant. Polypropylene cups and a peelable barrier retort lidding were used in this study. As compared to past research, a different peel testing technique was used to measure the peel and the opening force. The entire lid …


Earth Abundant Thin Film Technology For Next Generation Photovoltaic Modules, Githin Alapatt Dec 2014

Earth Abundant Thin Film Technology For Next Generation Photovoltaic Modules, Githin Alapatt

All Dissertations

With a cumulative generation capacity of over 100 GW, Photovoltaics (PV) technology is uniquely poised to become increasingly popular in the coming decades. Although, several breakthroughs have propelled PV technology, it accounts for only less than 1% of the energy produced worldwide. This aspect of the PV technology is primarily due to the somewhat high cost per watt, which is dependent on the efficiency of the PV cells as well as the cost of manufacturing and installing them. Currently, the efficiency of the PV conversion process is limited to about 25% for commercial terrestrial cells; improving this efficiency can increase …


Composite Films With Magnetic Nanorods: Fundamentals, Processing And Applications, Yu Gu Dec 2014

Composite Films With Magnetic Nanorods: Fundamentals, Processing And Applications, Yu Gu

All Dissertations

This Dissertation is centered on studying the composite films with magnetic nanorods. In recent years, one-dimensional magnetic nanostructures, such as magnetic nanorods, chains of magnetic nanoparticles, and nanotubes filled with magnetic nanoparticles have caught great attentions due to the breadth of applications. Their unique magnetic and geometrical features open new avenues of studies in medicine, sensors, optofluidics, magnetic swimming, and microrheology. In particular, they offered great opportunities for design of multifunctional devices and for manufacturing of anisotropic nano- and microstructures with unprecedented magnetic and mechanical properties. However, the strategy for nanorod alignment in both Newtonian and complex fluids has not …


High-Productivity Membrane Adsorbers: Polymer Surface-Modification Studies For Ion-Exchange And Affinity Bioseparations, Heather Chenette Aug 2014

High-Productivity Membrane Adsorbers: Polymer Surface-Modification Studies For Ion-Exchange And Affinity Bioseparations, Heather Chenette

All Dissertations

This Dissertation centers on the surface-modification of macroporous membranes to make them selective adsorbers for different proteins, and the analysis of the performance of these membranes relative to existing technology. Traditional chromatographic separations for the isolation and purification of proteins implement a column packed with resin beads or gel media that contain specific binding ligands on their exposed surface area. The productivity of this process is balanced by the effective use of the binding sites within the column and the speed at which the separation can take place, in addition to the need to maintain sufficient protein purity and bioactivity. …


Synthesis And Characterization Of Nanoscale Polymer Films Grafted To Metal Surfaces, Yuriy Galabura Aug 2014

Synthesis And Characterization Of Nanoscale Polymer Films Grafted To Metal Surfaces, Yuriy Galabura

All Dissertations

Anchoring thin polymer films to metal surfaces allows us to alter, tune, and control their biocompatibility, lubrication, friction, wettability, and adhesion, while the unique properties of the underlying metallic substrates, such as magnetism and electrical conductivity, remain unaltered. This polymer/metal synergy creates significant opportunities to develop new hybrid platforms for a number of devices, actuators, and sensors. This present work focused on the synthesis and characterization of polymer layers grafted to the surface of metal objects. We report the development of a novel method for surface functionalization of arrays of high aspect ratio nickel nanowires/micronails. The polymer 'grafting to' technique …


Advanced Bulk Processing Of Lightweight Materials For Utilization In The Transportation Sector, Justin Milner Aug 2014

Advanced Bulk Processing Of Lightweight Materials For Utilization In The Transportation Sector, Justin Milner

All Dissertations

The overall objective of this research is to develop the microstructure of metallic lightweight materials via multiple advanced processing techniques with potentials for industrial utilization on a large scale to meet the demands of the aerospace and automotive sectors. This work focused on (i) refining the grain structure to increase the strength, (ii) controlling the texture to increase formability and (iii) directly reducing processing/production cost of lightweight material components. Advanced processing is conducted on a bulk scale by several severe plastic deformation techniques including: accumulative roll bonding, isolated shear rolling and friction stir processing to achieve the multiple targets of …


An Experimental Investigation Towards Improvement Of Thermoelectric Properties Of Strontium Titanate Ceramics, Arash Mehdizadeh Dehkordi Aug 2014

An Experimental Investigation Towards Improvement Of Thermoelectric Properties Of Strontium Titanate Ceramics, Arash Mehdizadeh Dehkordi

All Dissertations

The direct energy conversion between heat and electricity based on thermoelectric effects is a topic of long-standing interest in condensed matter materials science. Experimental and theoretical investigations in order to understand the mechanisms involved and to improve the materials properties and conversion efficiency have been ongoing for more than half a century. While significant achievements have been accomplished in improving the properties of conventional heavy element based materials (such as Bi$_2$Te$_3$ and PbTe) as well as the discovery of new materials systems for the close-to-room temperature and intermediate temperatures, high-temperature applications of thermoelectrics is still limited to one materials system, …


Effect Of Silicone Finishes On The Burning Behavior Of Polyester, Julien Boyon Aug 2014

Effect Of Silicone Finishes On The Burning Behavior Of Polyester, Julien Boyon

All Dissertations

Polyester fibers are widely used as filling in home applications such as pillows or comforters. Silicone finishes can be used to reduce friction between fibers during processing or as softeners to impart a pleasant down like hand on the fibers. However, it has been reported that these added silicone-based finishes may have a negative effect on the burning behavior of polyester. This research examined the possible mechanisms that can modify the response of polyester fibers when subjected to a flame source. In this study, a spunbond needled polyester nonwoven substrate was treated with different commercial silicone-based finishes. A vertical flame …


Synthesis Of Silicon Carbide Fibers From Polycarbosilane By Electrospinning Method, Yuan Yue Aug 2014

Synthesis Of Silicon Carbide Fibers From Polycarbosilane By Electrospinning Method, Yuan Yue

All Theses

Silicon carbide (SiC) is widely used in many fields due to its unique properties. Bulk SiC normally has a flexural strength of 500 - 550 MPa, a Vickers hardness of ~27 GPa, a Young's modulus of 380 - 430 GPa, and a thermal conductivity of approximately 120 W/mK. SiC fibers are of great interest since they are the good candidates for reinforcing ceramic matrix composites (CMCs) because of the weavability and high temperature strength of about two to three GPa at about 1000 °C. Silicon carbide fibers have been synthesized from polycarbosilane (PCS) with ~25 μm diameter using the melt-spinning …


Inverse Problems Using Reduced Basis Method, Phil Gralla May 2014

Inverse Problems Using Reduced Basis Method, Phil Gralla

All Theses

Inverse Problems is a field of great interest for many applications, such as parameter identification and image reconstruction. The underlying models of inverse problems in many applications often involve Partial Differential Equations (PDEs). A Reduced Basis (RB) method for solving PDE based inverse problems is introduced in this thesis. The RB has been rigorously established as an efficient approach for solving PDEs in recent years. In this work, we investigate whether the RB method can be used as a regularization for solving ill-posed and nonlinear inverse problems using iterative methods. We rigorously analyze the RB method and prove convergence of …