Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Entire DC Network

Mitochondria Imaging And Targeted Cancer Treatment, Tinghan Zhao Dec 2019

Mitochondria Imaging And Targeted Cancer Treatment, Tinghan Zhao

Dissertations

Mitochondria are essential organelles as the site of respiration in eukaryotic cells and are involved in many crucial functions in cell life. Dysfunction of mitochondrial metabolism and irregular morphology have been frequently found in human cancers. The capability of imaging mitochondria as well as regulating their microenvironment is important both scientifically and clinically. Mitochondria penetrating peptides (MPPs), certain peptides that are composed of cationic and hydrophobic amino acids, are good candidates for mitochondria targeting. Herein, a novel MPP, D-argine-phenylalanine-D-argine-phenylalanine-D-argine-phenylalanine-NH2 (rFrFrF), is conjugated with a rhodamine-based fluorescent chromophore (TAMRA). The TAMRA-rFrFrF probe exhibits advantageous properties for long-term mitochondria tracking of …


Mechanisms That Limit Oxidative Phosphorylation During High-Intensity Muscle Contractions In Vivo, Miles F. Bartlett Oct 2019

Mechanisms That Limit Oxidative Phosphorylation During High-Intensity Muscle Contractions In Vivo, Miles F. Bartlett

Doctoral Dissertations

Skeletal muscle oxidative capacity plays a critical role in human health and disease. Although current models of oxidative phosphorylation sufficiently describe skeletal muscle energetics during moderate-intensity contractions, much is still unknown about the mechanisms that control and limit oxidative phosphorylation during high-intensity contractions. In particular, the oxygen cost of force generation is augmented during exercise at workloads above the lactate threshold. Presently, it is unclear whether this augmentation in muscle oxygen consumption is driven by increased rates of oxidative ATP synthesis (ATPOX) or by decreases in the efficiency of ATPOX due to mitochondrial uncoupling. To address this …


The Role Of Mitofusins In The Osteoclast Lineage, Anna Ballard Aug 2019

The Role Of Mitofusins In The Osteoclast Lineage, Anna Ballard

Arts & Sciences Electronic Theses and Dissertations

Mitochondria exist in a highly dynamic network in many cell types, and mutations in mitochondrial transmembrane GTPase mitofusin2 (MFN2), a key factor that mediates mitochondrial tethering, cause defects in the nervous system. Intriguingly, the skeleton has been overlooked in patients with such mutations. Because expression of MFN2 and its homolog, mitofusin1 (MFN1) increase with maturation of osteoclasts (OCs), which are rich in mitochondria, we sought to determine the role of mitofusins in the OC lineage. Double knockout of Mfn1 and Mfn2 in OC precursors by Lysozyme-M cre reveals that mitofusin activity is required for OC function and maintenance of bone …


The Role Of Secretory Phospholipase A2 Group Iia In Obesity And Metabolism, Michael S. Kuefner Aug 2019

The Role Of Secretory Phospholipase A2 Group Iia In Obesity And Metabolism, Michael S. Kuefner

Theses and Dissertations (ETD)

Secretory phospholipase A2 group IIA (PLA2G2A) is a member of a family of secretory phospholipases previously implicated in inflammation, atherogenesis, and antibacterial actions. These enzymes hydrolyze glycerophospholipids at the sn-2 position releasing lysophospholipids and fatty acids. Though studies have shown PLA2G2A is pro-inflammatory and promotes atherosclerosis, no research has analyzed the role of this enzyme in obesity and metabolism. Studies in the past 5-10 years utilizing various knock- out or over-expression mouse models have analyzed the role of different secretory phospholipase A2s (sPLA2) in metabolic diseases. From these studies, it is known that at least seven of the 11 sPLA2 …


Phenotypic And Metabolic Plasticity In Canine Cellular Reprogramming, Ian C. Tobias May 2019

Phenotypic And Metabolic Plasticity In Canine Cellular Reprogramming, Ian C. Tobias

Electronic Thesis and Dissertation Repository

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) derived from large mammals reproduce few characteristics displayed by rodent or human counterparts. This is complicated by the inherent plasticity of mammalian ESC/iPSC cultures that resemble a variety of developmental stages including the naïve and primed pluripotent states. Defining the extrinsic signals that modulate the developmental identity of canine ESC/iPSC (i.e. primed versus naïve) will improve knowledge integration with more sophisticated rodent and primate research. In this thesis, I sought to determine if manipulation of the culture environment can promote nuclear and metabolic reprogramming of canine cell lines towards a …


A Dedicated Chaperone Mediates The Safe Transfer Of Mitoribosomal Proteins To Their Site Of Assembly, Gabrielle Ashley Hillman May 2019

A Dedicated Chaperone Mediates The Safe Transfer Of Mitoribosomal Proteins To Their Site Of Assembly, Gabrielle Ashley Hillman

Graduate School of Biomedical Sciences Theses and Dissertations

Mitochondrial ribosomes are functionally specialized for the synthesis of several essential inner membrane proteins of the respiratory chain. While remarkable progress has recently been made towards understanding the structure of mitoribosomes, the unique pathways and factors that facilitate their biogenesis remain largely unknown. This dissertation defines the physiological role of an evolutionarily conserved yeast protein called Mam33 in mitochondrial ribosome assembly. The biomedical relevance of this finding stems from the fact that mutations or changes in its expression of the human ortholog p32 result in mitochondrial dysfunction. In human patients, bi-allelic mutations cause severe multisystemic defects in mitochondrial energy metabolism, …


Hormone Signaling, Gene Expression, And Mitochondrial Hormone Receptor Expression In Avian Muscle (Cells), Kentu Rushadd Lassiter May 2019

Hormone Signaling, Gene Expression, And Mitochondrial Hormone Receptor Expression In Avian Muscle (Cells), Kentu Rushadd Lassiter

Graduate Theses and Dissertations

Mitochondria are vital to the proper growth and function of muscle cells since they’re responsible for the majority of ATP production used for cellular energy. Previous studies have investigated how differences in mitochondrial function affects feed efficiency (FE) in broilers phenotyped for High and Low FE. Low FE broilers have been shown to have increased levels of reactive oxygen species (ROS), thus contributing to higher levels of oxidative stress and damage seen in these birds. Global gene and protein expression studies conducted on breast muscle of the High FE and Low FE phenotypes have suggested that differences in mitochondrial function …


Hypoglycemia In Mitochondrial Disorders, Allison Moats May 2019

Hypoglycemia In Mitochondrial Disorders, Allison Moats

Dissertations & Theses (Open Access)

INTRODUCTION: The electron transport chain (ETC) in mitochondria functions to produce energy in the form of adenosine triphosphate (ATP). Defects in the mitochondrial or nuclear DNA that codes for components of the ETC lead to mitochondrial disorders (MTDs). MTDs are multi-system conditions affecting the heart, muscles, and especially brain. The endocrine system is commonly affected in MTDs, and diabetes and hyperglycemia are established secondary diagnoses. Rates of non-iatrogenic hypoglycemia have not been studied in individuals with MTDs. This study aims to investigate the frequency of hypoglycemia in patients with MTDs.

METHODS: Individuals diagnosed with a ‘definite’ or ‘probable’ …


Structure And Function Of Stomatin-Like Protein 2, Safee Mian Apr 2019

Structure And Function Of Stomatin-Like Protein 2, Safee Mian

Electronic Thesis and Dissertation Repository

Stomatin-like protein 2 (SLP-2), a member of the SPFH superfamily, is a mitochondrial inner membrane protein required for optimal mitochondrial respiration. SLP-2 binds to the important mitochondrial phospholipid cardiolipin (CL) and has been proposed to mediate formation of CL-enriched microdomains that would foster respiratory chain supercomplex (RCS) formation and stability. However, little is known about how SLP-2 structure facilitates its cellular function. The goal of this thesis was to elucidate if and how SLP-2 oligomerizes and by what means does it bind CL.

Biophysical analysis of the expressed SLP-2 SPFH domain, either with or without flanking residues, indicates it to …


Alpha-Synuclein Toxicity Is Caused By Mitochondrial Dysfunction, Michael G. Tauro Feb 2019

Alpha-Synuclein Toxicity Is Caused By Mitochondrial Dysfunction, Michael G. Tauro

Electronic Thesis and Dissertation Repository

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, affecting roughly 1% of the population over the age of sixty years. Alpha-synuclein (aSyn) is a protein implicated in both familial and idiopathic forms of PD, yet despite the wealth of data implicating aSyn as a causative agent in PD, the mechanisms underlying its toxicity remain mostly unknown. Mitochondrial dysfunction is a major hallmark of PD, yet there is only limited evidence linking aSyn toxicity to mitochondrial dysfunction. My study establishes a novel aSyn model in respiring yeast cells, which allows me to explore how aSyn affects mitochondrial homeostasis and …


Perturbation Of Energy Metabolism At The Center Of The Mechanism Of Action Of Valproate, Michael Ghassan Salsaa Jan 2019

Perturbation Of Energy Metabolism At The Center Of The Mechanism Of Action Of Valproate, Michael Ghassan Salsaa

Wayne State University Dissertations

Bipolar disorder (BD) is a common and debilitating psychiatric disorder. Valproic acid (VPA) is one of the major drugs used to treat BD patients. However, it is not universally effective and, in addition, causes severe side effects. Its mechanism of action is not known, which complicates efforts to develop more effective drugs. Studies have established that VPA perturbs metabolism, which is implicated in both the therapeutic mechanism of action of the drug as well as drug toxicity. However, the mechanism whereby VPA causes these perturbations is not understood. To address this knowledge gap, I investigated the acute and chronic effects …


Effects Of Commercial Formulations Of Glyphosate On Saccharomyces Cerevisiae, Apoorva Ravi Shankar Jan 2019

Effects Of Commercial Formulations Of Glyphosate On Saccharomyces Cerevisiae, Apoorva Ravi Shankar

Graduate Theses, Dissertations, and Problem Reports

Commercial formulations of glyphosate are among the most extensively used herbicides around the world. The active ingredient, glyphosate, targets the aromatic amino acid pathway. This pathway is absent in mammals, resulting in low toxicity. Different formulations contain varying adjuvants and surfactants, whose synergistic effects are yet to be extensively studied at the cellular level. In this study, I tested multiple commercial formulations that showed a variation in growth phenotype among different yeast strains. To gain a better understanding of response and resistance mechanisms at the genome and transcriptome level, I carried out an in-lab evolution study, along with a transcriptome …


Neuroprotective Strategies Following Experimental Traumatic Brain Injury: Lipid Peroxidation-Derived Aldehyde Scavenging And Inhibition Of Mitochondrial Permeability Transition, Jacqueline Renee Kulbe Jan 2019

Neuroprotective Strategies Following Experimental Traumatic Brain Injury: Lipid Peroxidation-Derived Aldehyde Scavenging And Inhibition Of Mitochondrial Permeability Transition, Jacqueline Renee Kulbe

Theses and Dissertations--Neuroscience

Traumatic brain injury (TBI) represents a significant health crisis. To date there are no FDA-approved pharmacotherapies available to prevent the neurologic deficits caused by TBI. Following TBI, dysfunctional mitochondria generate reactive oxygen and nitrogen species, initiating lipid peroxidation (LP) and the formation of LP-derived neurotoxic aldehydes, which bind mitochondrial proteins, exacerbating dysfunction and opening of the mitochondrial permeability pore (mPTP), resulting in extrusion of mitochondrial sequestered calcium into the cytosol, and initiating a downstream cascade of calpain activation, spectrin degradation, neurodegeneration and neurologic impairment.

As central mediators of the TBI secondary injury cascade, mitochondria and LP-derived neurotoxic aldehydes make promising …


Role Of Extracellular Vesicles In Neuroinflammatory Progression And Mitochondrial Functional Alterations, Ashley E. Russell Jan 2019

Role Of Extracellular Vesicles In Neuroinflammatory Progression And Mitochondrial Functional Alterations, Ashley E. Russell

Graduate Theses, Dissertations, and Problem Reports

Inflammation within the central nervous system (CNS), termed neuroinflammation, is a defining characteristic of many neuropathological conditions, including Alzheimer’s disease (AD) and stroke. Certain inflammatory mediators activate the transcription factor NF-κB, which induces transcription of many pro-inflammatory genes, including miR-34a and miR-146a. Several target candidate genes of these miRNAs encode for proteins of the mitochondrial electron transport chain. In our studies, we demonstrate that in response to inflammatory stimuli, such as TNF-α, the expression of miR-34a and -146a is significantly increased in several CNS cell types, and in their secreted extracellular vesicles (EVs). Exposure to TNF-α-derived EVs significantly increases cellular …


Expression Of Alternative Oxidase In The Copepod T. Californicus When Exposed To Environmental Stressors, Carly Tward Jan 2019

Expression Of Alternative Oxidase In The Copepod T. Californicus When Exposed To Environmental Stressors, Carly Tward

Theses and Dissertations (Comprehensive)

In addition to the typical electron transport system in animal mitochondria responsible for oxidative phosphorylation, some species possess an alternative oxidase (AOX) pathway, which causes electrons to bypass proton pumping complexes. Although AOX appears to be energetically wasteful, studies have revealed its wide taxonomic distribution, and indicate it plays a role in environmental stress tolerance. AOX discovery in animals is recent, and further research into its expression, regulation, and physiological role has been impeded by the lack of an experimental model organism. DNA database searches using bioinformatics revealed an AOX sequence present in the arthropod Tigriopus californicus. Multiple sequence …