Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

Doctoral Dissertations

Theses/Dissertations

Biological sciences

Articles 1 - 15 of 15

Full-Text Articles in Entire DC Network

Improvement Of Fluorescence-Based Microfluidic Dna Analyzers, Collin Tranter Apr 2017

Improvement Of Fluorescence-Based Microfluidic Dna Analyzers, Collin Tranter

Doctoral Dissertations

A tremendous effort continues in the development of micro-total-analysis-systems; in support of this, many chemical passivation methods have been developed to enhance the biocompatibility of such microfluidic systems. However, the suitability of these passivation techniques to many fluorescence-based assays still remains inconsistent. This part of this work is focused on the performance of a third generation intercalating DNA dye when used within microfluidic devices treated with a select variety of passivating coatings. The results of these tests indicate that passivation coatings which are intended to shed DNA based on electrostatic repulsion will in fact imbibe the fluorescent DNA intercalating dye …


Genome Engineering In Mammalian Cells By Flp And Cre Dna Recombinase Variants, Riddhi Shah Jul 2016

Genome Engineering In Mammalian Cells By Flp And Cre Dna Recombinase Variants, Riddhi Shah

Doctoral Dissertations

Genome engineering relies on DNA modifying enzymes that are able to locate a DNA sequence of interest and initiate a desired genome rearrangement. Currently, the field predominantly utilizes site-specific DNA nucleases that depend on the host DNA repair machinery to complete a genome modification task. We show here that genome engineering approaches that employ self-sufficient, versatile site-specific DNA recombinase Flp and Cre can be developed into promising alternatives. We demonstrate that a Flp variant evolved to recombine an FRT-like sequence FL-IL10A, which is located upstream of the human interleukin-10 gene, can target this sequence in the model setting and native …


Nano Clay-Enhanced Calcium Phosphate Cements And Hydrogels For Biomedical Applications, Udayabhanu Jammalamadaka Jul 2016

Nano Clay-Enhanced Calcium Phosphate Cements And Hydrogels For Biomedical Applications, Udayabhanu Jammalamadaka

Doctoral Dissertations

Biomaterials are used as templates for drug delivery, scaffolds in tissue engineering, grafts in surgeries, and support for tissue regeneration. Novel biomaterial composites are needed to meet multifaceted requirements of compatibility, ease of fabrication and controlled drug delivery. Currently used biomaterials in orthopedics surgeries suffer limitations in toxicity and preventing infections. Polymethyl methacrylate (PMMA) used as bone cement suffers from limitations of thermal necrosis and monomer toxicity calls for development of better cementing biomaterials. A biodegradable/bioresorbable cement with good mechanical properties is needed to address this short coming. Metal implants used in fixing fractures or total joint replacement needs improvements …


Microbial Ecology Of Waterborne Pathogens In Sus Scofra And Odocoileus Virginianus In The Jackson Bienville Wildlife Management Area, Jaymes Hunter Collins Apr 2016

Microbial Ecology Of Waterborne Pathogens In Sus Scofra And Odocoileus Virginianus In The Jackson Bienville Wildlife Management Area, Jaymes Hunter Collins

Doctoral Dissertations

Previous studies have demonstrated that feral swine (Sus scofra ) are significant reservoirs for a number of pathogens that present a potential threat to wildlife and humans. Despite this, few studies have gone beyond quantifying the incidence of these pathogens to further probe their ecology within a specific habitat or ecosystem.

Overall, the objective of this study was to characterize three potential reservoirs in a feral swine infested habitat; two ungulates, and one aquatic reservoir. Our study area was the Jackson-Bienville Wildlife Management Area (J-B WMA). We chose four waterborne bacteria: Brucella spp., Leptospira interrogans, Salmonella enterica, and Helicobacter …


Clay Nanotube Composites For Antibacterial Nanostructured Coatings, Christen J. Boyer Apr 2016

Clay Nanotube Composites For Antibacterial Nanostructured Coatings, Christen J. Boyer

Doctoral Dissertations

A surging demand for the development of new antimicrobial nanomaterials exists due to the frequency of medical device-associated infections and the transfer of pathogens from highly touched objects. Naturally occurring halloysite clay nanotubes (HNTs) have shown to be ideal particles for polymer reinforcement, time-release drug delivery, nano-reactor synthesis, and as substrate material for nanostructured coatings.

This research demonstrates the feasibility of a novel method for coating HNTs with metals for antibacterial applications. The first ever ability to coat HNTs through electrolysis was developed for customizable and multi-functional antibacterial nanoparticle platforms. HNTs were investigated as substrate for the deposition of copper …


Mutlifunctional Platforms For Gene And Drug Delivery For Cancer Therapy, Jeffery J. Ambrose Jr. Apr 2016

Mutlifunctional Platforms For Gene And Drug Delivery For Cancer Therapy, Jeffery J. Ambrose Jr.

Doctoral Dissertations

The National Cancer Institute and the American Cancer Society estimate that 1.6 million new cancer incidences and over half a million cancer related deaths occur annually [1][2]. Cancer the second most common cause of death in the United States [1], [2]. Although the causes of cancer can vary depending on cell type, all or almost all instances of cancer arise from a mutation or from an abnormal activation of the cellular genes that control cell growth and mitosis [3].

Treatment of a given cancer type depends on the subtype, stage and progression of the cancer. Varieties of cancer therapy include …


Size Specific Transfection To Mammalian Cells By Micropillar Array Electroporation, Yingbo Zu Jan 2016

Size Specific Transfection To Mammalian Cells By Micropillar Array Electroporation, Yingbo Zu

Doctoral Dissertations

Electroporation serves as a promising non-viral gene delivery approach, while its current configurations carry drawbacks associated with high-voltage electrical pulses and heterogeneous treatment on individual cells. Here, we developed a new micropillar array electroporation (MAE) platform to advance the delivery of plasmid DNA and RNA to mammalian cells. By introducing well-patterned micropillar array on the electrode surface, the number of pillars each cell faces varies with its cell membrane surface area, despite their large population and random locations. In this way, cell size specific electroporation is conveniently done and contributed to a 2.5~3 fold increase on plasmid DNA transfection and …


A Mathematical Model And Numerical Method For Thermoelectric Dna Sequencing, Liwei Shi Jul 2013

A Mathematical Model And Numerical Method For Thermoelectric Dna Sequencing, Liwei Shi

Doctoral Dissertations

DNA sequencing is the process of determining the precise order of nucleotide bases, adenine, guanine, cytosine, and thymine within a DNA molecule. It includes any method or technology that is used to determine the order of the four bases in a strand of DNA. The advent of rapid DNA sequencing methods has greatly accelerated biological and medical research and discovery. Thermoelectric DNA sequencing is a novel method to sequence DNA by measuring the heat that is released when DNA polymerase inserts a deoxyribonucleoside triphosphate into a growing DNA strand. The thermoelectric device for this project is composed of four parts: …


Gene Synthesis, Cloning, Expression, Purification And Biophysical Characterization Of The C2 Domain Of Human Tensin, Kiran Sukumar Gajula Oct 2007

Gene Synthesis, Cloning, Expression, Purification And Biophysical Characterization Of The C2 Domain Of Human Tensin, Kiran Sukumar Gajula

Doctoral Dissertations

Tensin is a large "docking" protein found in the adhesive junctions of animal cells and recruited early in the development of cell-substrate contacts. There it binds to the cytoplasmic domain of integrin β1 and caps the barbed ends of filamentous actin. This forms a rational basis for its implication in a direct role in the mechanics of membrane-cytoskeleton interactions. Tensin provides a physical link between the actin cytoskeleton, integrins, and other proteins at the cell-substrate contacts. Its overall biochemical properties are a function of its domain composition and architecture, i.e., the domains that are present and their relative positions in …


Membrane Systems With Limited Parallelism, Bianca Daniela Popa Oct 2006

Membrane Systems With Limited Parallelism, Bianca Daniela Popa

Doctoral Dissertations

Membrane computing is an emerging research field that belongs to the more general area of molecular computing, which deals with computational models inspired from bio-molecular processes. Membrane computing aims at defining models, called membrane systems or P systems, which abstract the functioning and structure of the cell. A membrane system consists of a hierarchical arrangement of membranes delimiting regions, which represent various compartments of a cell, and with each region containing bio-chemical elements of various types and having associated evolution rules, which represent bio-chemical processes taking place inside the cell.

This work is a continuation of the investigations aiming to …


Development Of Self-Assembled Monolayer-Based Cell Culture Platform Towards Fabrication Of A Three-Dimensional Bioreactor, Rajendra Kandoor Aithal Apr 2006

Development Of Self-Assembled Monolayer-Based Cell Culture Platform Towards Fabrication Of A Three-Dimensional Bioreactor, Rajendra Kandoor Aithal

Doctoral Dissertations

The extracellular matrix (ECM) plays an important role in regulating a number of cellular properties and functions like cell differentiation, cell synthesis and degradation, cell viability and proliferation, cell function, and cell aging. Surface modification of planar substrates with self-assembled monolayers (SAMs) is a promising technique to achieve stable ECMs.

In this work, substrates such as silicon (Si), gallium arsenide (GaAs) and indium tin oxide (ITO) substrates were modified with SAMS containing amino (-NH2), methyl (-CH3), thiol (-SH) and carboxylic (-COOH) end groups and characterized using contact angle measurements, surface infrared (IR) spectroscopy and atomic force microscopy (AFM). Different cell …


Development Of A High Spatial Selectivity Tri-Polar Concentric Ring Electrode For Laplacian Electroencephalography (Leeg) System, Kanthaiah Koka Apr 2006

Development Of A High Spatial Selectivity Tri-Polar Concentric Ring Electrode For Laplacian Electroencephalography (Leeg) System, Kanthaiah Koka

Doctoral Dissertations

Brain activity generates electrical potentials that are spatio-temporal in nature. Electroencephalography (EEG) is the least costly and most widely used non-invasive technique for diagnosing many brain problems. It has high temporal resolution but lacks high spatial resolution.

The surface Laplacian will enhance the spatial resolution of EEG as it performs the second spatial derivative of the surface potentials. In an attempt to increase the spatial selectivity, researchers introduced a bipolar electrode configuration using a five point finite difference method (FPM) and others applied a quasi-bipolar (tri-polar with two elements shorted) concentric electrode configuration. To further increase the spatial resolution, the …


A High -Order Finite Difference Method For Solving Bioheat Transfer Equations In Three-Dimensional Triple -Layered Skin Structure, Haofeng Yu Jul 2004

A High -Order Finite Difference Method For Solving Bioheat Transfer Equations In Three-Dimensional Triple -Layered Skin Structure, Haofeng Yu

Doctoral Dissertations

Investigations on instantaneous skin burns are useful for an accurate assessment of burn-evaluation and for establishing thermal protections for various purposes. Meanwhile, hyperthermia with radiation is important in the treatment of cancer, and it is essential for developers and users of hyperthermia systems to predict, and interpret correctly the biomass thermal and vascular response to heating. In this dissertation, we employ the well-known Pennes' bioheat transfer equation to predict the degree of skin burn and the temperature distribution in hyperthermia cancer treatment.

A fourth-order compact finite difference scheme is developed to solve Pennes' bioheat transfer equation in a three-dimensional single …


Fabrication, Characterization, And Chemical Sensing Of Silicon Dioxide Microcantilevers, Yanjun Tang Apr 2004

Fabrication, Characterization, And Chemical Sensing Of Silicon Dioxide Microcantilevers, Yanjun Tang

Doctoral Dissertations

The objective of this work is to design and fabricate an advanced silicon dioxide microcantilever sensor and to investigate chemical and biological sensing by microtechnology.

Microcantilever sensor technology has many advantages including fast response time, lower cost of fabrication, the possibility of sensor arrays with small overall dimensions, the ability to explore microenvironments, and improved portability for field applications. For all of these advantages, microcantilever chemical and biological sensors have drawn more and more attention.

So far, all other microcantilevers were designed and fabricated for AFM applications. We developed a novel SiO2 microcantilever especially for chemical and biological sensor applications. …


Modeling Of The Inverse Heat -Conduction Problem With Application To Laser Chemical Vapor Deposition And Bioheat Transfer, Peng Zhen Oct 2003

Modeling Of The Inverse Heat -Conduction Problem With Application To Laser Chemical Vapor Deposition And Bioheat Transfer, Peng Zhen

Doctoral Dissertations

This dissertation consists of two parts. Part one deals with three-dimensional laser induced chemical vapor deposition (3D-LCVD), whereas part two deals with a Pennes model of a 3D skin structure. LCVD is an important technique in manufacturing complex micro-structures with high aspect ratio. In part one, a numerical model was developed for simulating kinetically-limited growth of an axisymmetric cylindrical rod by pre-specifying the surface temperature distribution required for growing the rod and then by obtaining optimized laser power that gives rise to the pre-specified temperature distribution. The temperature distribution at the surface of the rod was assumed to be at …