Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

Doctoral Dissertations

Theses/Dissertations

2018

TPX2

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Motor Protein Regulation In Mammalian Mitosis, Barbara Mann Jul 2018

Motor Protein Regulation In Mammalian Mitosis, Barbara Mann

Doctoral Dissertations

Developing and maintaining a multicellular organism relies on the fundamental biological process of cell division, which ensures that genetic material is equally segregated between daughter cells. During mitosis, cells completely rearrange their cytoskeleton into a bipolar spindle through the concerted efforts of microtubules, motor proteins, and microtubule-associated proteins, which cells must regulate spatially and temporally to prevent errors such as chromosomal missegregation: a major cause of cancer. Although the mitotic spindle is a validated target for chemotherapy drug resistance and redundant pathways have highlighted the need for new targets. It is therefore important to understand how proteins that help build …


Mechanism Of Regulation Of Kinesins Eg5 And Kif15 By Tpx2, Sai Keshavan Balchand Mar 2018

Mechanism Of Regulation Of Kinesins Eg5 And Kif15 By Tpx2, Sai Keshavan Balchand

Doctoral Dissertations

Cell division is the fundamental process by which the replicated genetic material is faithfully segregated to form two identical daughter cells. The mitotic spindle is the macromolecular cytoskeletal structure that is built during every round of cell division to successfully separate the duplicated genome equally into the daughter cells. Errors in spindle formation can thus causegenetic aberrations and can potentially lead to cancer. Understanding the mechanisms that govern proper spindle assembly and function is thus important. Eg5 and Kif15 are two important kinesins which play a major role in establishing and maintaining bipolarity of the mitotic spindle. Both Eg5 and …