Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

Washington University in St. Louis

Theses/Dissertations

Zebrafish

Articles 1 - 9 of 9

Full-Text Articles in Entire DC Network

Genetics Of Pediatric Musculoskeletal Disorders, Lilian Antunes Jan 2021

Genetics Of Pediatric Musculoskeletal Disorders, Lilian Antunes

Arts & Sciences Electronic Theses and Dissertations

Pediatric musculoskeletal disorders are an extremely broad category of diseases that are often inherited. While individually rare, collectively these disorders are common, affecting around 3% of live births in the US. Despite the mounting clinical and molecular evidence for a genetic etiology, the cause for many patients with pediatric musculoskeletal disorders remain largely unknown. Major challenges in rare pediatric diseases include recruiting large numbers of patients and determining the significance and functional impacts of variants associated with disease within individuals or families. Whole exome sequencing (WES) is a powerful tool to identify coding variants that are associated with rare pediatric …


Regulation Of Yolk Microtubule Dynamics By Dachsous Cadherins, Gina Danielle Castelvecchi Aug 2020

Regulation Of Yolk Microtubule Dynamics By Dachsous Cadherins, Gina Danielle Castelvecchi

Arts & Sciences Electronic Theses and Dissertations

The process of epiboly, or the thinning and spreading of a tissue, is a well-conserved morphogenetic process. As one of four conserved gastrulation cell movements, epiboly is important to help organize the overall body plan. Epiboly in zebrafish involves the thinning and spreading of the blastoderm originating from the animal pole to completely enclose the yolk. It is driven by a multitude of physical processes that involve the three cell types comprising the embryo: the yolk syncytial layer (YSL), enveloping layer (EVL), and deep cells. These physical aspects can be broadly described as involving cell-cell interactions through adhesion proteins, actomyosin …


Fast Objective Coupled Planar Illumination Microscopy, Cody Jonathan Greer Dec 2018

Fast Objective Coupled Planar Illumination Microscopy, Cody Jonathan Greer

Arts & Sciences Electronic Theses and Dissertations

Among optical imaging techniques light sheet fluorescence microscopy stands out as one of the most attractive for capturing high-speed biological dynamics unfolding in three dimensions. The technique is potentially millions of times faster than point-scanning techniques such as two-photon microscopy. This potential is especially poignant for neuroscience applications due to the fact that interactions between neurons transpire over mere milliseconds within tissue volumes spanning hundreds of cubic microns. However current-generation light sheet microscopes are limited by volume scanning rate and/or camera frame rate. We begin by reviewing the optical principles underlying light sheet fluorescence microscopy and the origin of these …


The Role Of Membrane Excitability In Insulin Regulation, Christopher Howard Emfinger Aug 2018

The Role Of Membrane Excitability In Insulin Regulation, Christopher Howard Emfinger

Arts & Sciences Electronic Theses and Dissertations

In mammals, ATP-sensitive K+ (KATP) channels are essential regulators of insulin secretion from pancreatic islet [beta]-cells, illustrated by the finding that gain-of-function mutations in KATP channels (KATP-GOF) cause neonatal diabetes mellitus (NDM). However, variability in symptom severity and effectiveness of treatment is seen in NDM, even for those with the same mutation and in the same family. Short-term treatment of mice expressing KATP-GOF mutations in [beta]-cells (KATP-GOF mice) with the KATP blocker glibenclamide during disease onset results in two outcomes: one subset becomes severely diabetic (non-remitters), whereas the other subset remains below the glucose levels at which significant side effects …


The Role Of Actr10 In Nervous System Development And Disease, Amy Herbert May 2018

The Role Of Actr10 In Nervous System Development And Disease, Amy Herbert

Arts & Sciences Electronic Theses and Dissertations

The vertebrate nervous system requires myelinating glia for the fast propagation of action potentials, as well as for vital trophic support to axons. Myelinating glia produce myelin, which is a lipid-rich, multi-lamellar sheath that surrounds axons and allows for rapid electrical signaling. In the central nervous system (CNS), myelin is produced by oligodendrocytes, while in the peripheral nervous system (PNS), Schwann cells perform this function. Although glia have historically been understudied compared to neurons, recent research has uncovered critical roles for glia in nervous system development and disease. Disruption to myelin or to the glial cells that generate myelin can …


Genetic And Genomic Dissections Of Myelinating Glial Cell Development, Breanne Leigh Harty May 2017

Genetic And Genomic Dissections Of Myelinating Glial Cell Development, Breanne Leigh Harty

Arts & Sciences Electronic Theses and Dissertations

Myelin is a multilamellar sheath made by specialized glial cells that iteratively spiral and compact their plasma membranes around axon segments. In vertebrate nervous systems, myelination facilitates rapid action propagation and provides trophic support critical for neuronal survival. In the central nervous system (CNS), oligodendrocytes (OLs) extend many processes to simultaneously ensheath multiple axons, while in the peripheral nervous system (PNS), myelinating Schwann cells (SCs) pair 1:1 with a single axon segment. Elaboration of the myelin sheath is one of the most exquisite and complex examples of massive coordinated cellular shape changes in the vertebrate nervous system. Furthermore, the importance …


Epigenomics Of Cell Fate In Development And Disease, Rebecca Faith Lowdon Dec 2016

Epigenomics Of Cell Fate In Development And Disease, Rebecca Faith Lowdon

Arts & Sciences Electronic Theses and Dissertations

Epigenetic features at regulatory elements provide instructive cues for transcriptional regulation during development. However, the particular epigenetic alterations necessary for proper cell fate acquisition and differentiation are not well understood. This dissertation explores the epigenetic dynamics of regulatory elements during development and uses epigenome annotations to document inappropriate transcriptional regulation in disease. First, I summarize my contributions to developing a new algorithm for detecting differential DNA methylation, M&M. I report the application of the M&M algorithm to identify distinct classes of DNA methylation dynamics in surface ectoderm (SE) progenitor cells and SE-derived lineages: epigenome alterations, and differential DNA methylation in …


Essential Roles Of Stat3 In Zebrafish Development, Yinzi Liu Aug 2015

Essential Roles Of Stat3 In Zebrafish Development, Yinzi Liu

Arts & Sciences Electronic Theses and Dissertations

Vertebrate gastrulation is a fundamental morphogenetic process during which germ layers are formed, patterned and shaped into a body plan with organ rudiments. Among the conserved gastrulation movements, convergence and extension (C&E) occur concurrently to narrow the germ layers mediolaterally and elongate them along the anteroposterior embryonic axis. C&E are largely driven by cell migration and cell intercalation, while cell proliferation has been considered dispensable and even incompatible with gastrulation movements and morphogenesis. Signal transducer and activator of transcription 3 (Stat3) has been implicated by antisense morpholino loss-of-function study in regulation of zebrafish C&E movements in part by promoting non …


Characterization Of The Placenta-Specific 8.1 Gene Function During Zebrafish Embryogenesis, Haiting Ma Apr 2013

Characterization Of The Placenta-Specific 8.1 Gene Function During Zebrafish Embryogenesis, Haiting Ma

All Theses and Dissertations (ETDs)

The PLAC8 gene encodes for a small, cysteine-rich protein conserved in vertebrates that is a member of a large family of PLAC8-motif containing proteins with diverse functions in animals, plants, and algae. Recently, high levels of PLAC8 expression have been detected in aggressive colorectal cancer and invasive breast cancer, and potentially contributing to the cancer pathogenesis. However, the molecular and cellular functions of PLAC8 in vertebrate development, homeostasis, and disease remain unclear. To determine the function of PLAC8 under disease and normal conditions, in this thesis work, I identified plac8.1 as a PLAC8 homolog in zebrafish, a vertebrate model system …