Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

Washington University in St. Louis

Theses/Dissertations

2017

Obesity

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

The Effect Of Dietary Fat On Obesity, Gene Expression, And Dna Methylation In Two Generations Of Mice, Madeline Rose Keleher Aug 2017

The Effect Of Dietary Fat On Obesity, Gene Expression, And Dna Methylation In Two Generations Of Mice, Madeline Rose Keleher

Arts & Sciences Electronic Theses and Dissertations

As obesity rates continue rising nationally and globally, it is crucial to understand how a high-fat diet disrupts the regulation of the genome and leads to adverse health effects. Uncovering the underlying gene expression and DNA methylation changes induced by an individual’s high-fat diet and a maternal high-fat diet can pinpoint new targets for epigenetic therapies and reveal the physiological and behavioral changes in obesity. The goal of this dissertation is to gain deeper insight into the DNA methylation and gene expression changes that occur in response to a high-fat diet.

I studied the response to dietary fat within two …


Mitochondrial Damage Accumulation In Oocytes – A Potential Link Between Maternal Obesity And Increased Cardiometabolic Disease Risk In Offspring., Anna Louise Boudoures May 2017

Mitochondrial Damage Accumulation In Oocytes – A Potential Link Between Maternal Obesity And Increased Cardiometabolic Disease Risk In Offspring., Anna Louise Boudoures

Arts & Sciences Electronic Theses and Dissertations

The developmental origins of health and disease (DoHAD) hypothesis suggests that negative maternal lifestyle choices, such as obesity, affect the health of her offspring. Clinical and laboratory studies support this hypothesis – offspring born to obese mothers are at increased risk for health conditions including cardiometabolic syndrome and congenital abnormalities. Maternal obesity damages the oocytes, contributing to the increased disease risk by transmitting damaged organelles and epigenetic modifications to the offspring. Mitochondria, the most abundant organelle in the oocyte, are damaged in oocytes from obese females. However, we do not understand if mitochondrial damage in oocytes is reversible nor why …