Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 225

Full-Text Articles in Entire DC Network

Embryonic Origin And Genetic Basis Of Cave Associated Phenotypes In The Isopod Crustacean Asellus Aquaticus., Hafasa Mojaddidi, Franco E Fernandez, Priscilla A Erickson, Meredith E. Protas Nov 2019

Embryonic Origin And Genetic Basis Of Cave Associated Phenotypes In The Isopod Crustacean Asellus Aquaticus., Hafasa Mojaddidi, Franco E Fernandez, Priscilla A Erickson, Meredith E. Protas

Meredith Protas

Characteristics common to animals living in subterranean environments include the reduction or absence of eyes, lessened pigmentation and enhanced sensory systems. How these characteristics have evolved is poorly understood for the majority of cave dwelling species. In order to understand the evolution of these changes, this study uses an invertebrate model system, the freshwater isopod crustacean, Asellus aquaticus, to examine whether adult differences between cave and surface dwelling individuals first appear during embryonic development. We hypothesized that antennal elaboration, as well as eye reduction and pigment loss, would be apparent during embryonic development. We found that differences in pigmentation, eye …


Identification Of Lipid Droplet Structure-Like/Resident Proteins In Caenorhabditis Elegans., Huimin Na, Peng Zhang, Yong Chen, Xiaotong Zhu, Yi Liu, Yangli Liu, Kang Xie, Ningyi Xu, Fuquan Yang, Yong Yu, Simon Cichello, Ho Yi Mak, Meng C Wang, Hong Zhang, Pingsheng Liu Sep 2019

Identification Of Lipid Droplet Structure-Like/Resident Proteins In Caenorhabditis Elegans., Huimin Na, Peng Zhang, Yong Chen, Xiaotong Zhu, Yi Liu, Yangli Liu, Kang Xie, Ningyi Xu, Fuquan Yang, Yong Yu, Simon Cichello, Ho Yi Mak, Meng C Wang, Hong Zhang, Pingsheng Liu

Yong Chen

The lipid droplet (LD) is a cellular organelle that stores neutral lipids in cells and has been linked with metabolic disorders. Caenorhabditis elegans has many characteristics which make it an excellent animal model for studying LDs. However, unlike in mammalian cells, no LD structure-like/resident proteins have been identified in C. elegans, which has limited the utility of this model for the study of lipid storage and metabolism. Herein based on three lines of evidence, we identified that MDT-28 and DHS-3 previously identified in C. elegans LD proteome were two LD structure-like/resident proteins. First, MDT-28 and DHS-3 were found to be …


The Proteomics Of Lipid Droplets: Structure, Dynamics, And Functions Of The Organelle Conserved From Bacteria To Humans., Li Yang, Yunfeng Ding, Yong Chen, Shuyan Zhang, Chaoxing Huo, Yang Wang, Jinhai Yu, Peng Zhang, Huimin Na, Huina Zhang, Yanbin Ma, Pingsheng Liu Sep 2019

The Proteomics Of Lipid Droplets: Structure, Dynamics, And Functions Of The Organelle Conserved From Bacteria To Humans., Li Yang, Yunfeng Ding, Yong Chen, Shuyan Zhang, Chaoxing Huo, Yang Wang, Jinhai Yu, Peng Zhang, Huimin Na, Huina Zhang, Yanbin Ma, Pingsheng Liu

Yong Chen

Lipid droplets are cellular organelles that consists of a neutral lipid core covered by a monolayer of phospholipids and many proteins. They are thought to function in the storage, transport, and metabolism of lipids, in signaling, and as a specialized microenvironment for metabolism in most types of cells from prokaryotic to eukaryotic organisms. Lipid droplets have received a lot of attention in the last 10 years as they are linked to the progression of many metabolic diseases and hold great potential for the development of neutral lipid-derived products, such as biofuels, food supplements, hormones, and medicines. Proteomic analysis of lipid …


In Situ Capture Of Chromatin Interactions By Biotinylated Dcas9., Xin Liu, Yuannyu Zhang, Yong Chen, Mushan Li, Feng Zhou, Kailong Li, Hui Cao, Min Ni, Yuxuan Liu, Zhimin Gu, Kathryn E Dickerson, Shiqi Xie, Gary C Hon, Zhenyu Xuan, Michael Q Zhang, Zhen Shao, Jian Xu Sep 2019

In Situ Capture Of Chromatin Interactions By Biotinylated Dcas9., Xin Liu, Yuannyu Zhang, Yong Chen, Mushan Li, Feng Zhou, Kailong Li, Hui Cao, Min Ni, Yuxuan Liu, Zhimin Gu, Kathryn E Dickerson, Shiqi Xie, Gary C Hon, Zhenyu Xuan, Michael Q Zhang, Zhen Shao, Jian Xu

Yong Chen

Cis-regulatory elements (CREs) are commonly recognized by correlative chromatin features, yet the molecular composition of the vast majority of CREs in chromatin remains unknown. Here, we describe a CRISPR affinity purification in situ of regulatory elements (CAPTURE) approach to unbiasedly identify locus-specific chromatin-regulating protein complexes and long-range DNA interactions. Using an in vivo biotinylated nuclease-deficient Cas9 protein and sequence-specific guide RNAs, we show high-resolution and selective isolation of chromatin interactions at a single-copy genomic locus. Purification of human telomeres using CAPTURE identifies known and new telomeric factors. In situ capture of individual constituents of the enhancer cluster controlling human β-globin …


Development And Validation Of A Rapid Method For The Detection Of Latrunculol A In Plasma., Jiajiu Shaw, Frederick A. Valeriote, Joseph Media, Tyler A. Johnson, Taro Amagata, Karen Tenney, Phillip Crews Mar 2019

Development And Validation Of A Rapid Method For The Detection Of Latrunculol A In Plasma., Jiajiu Shaw, Frederick A. Valeriote, Joseph Media, Tyler A. Johnson, Taro Amagata, Karen Tenney, Phillip Crews

Tyler Johnson

Latrunculol A is a recently discovered 6,7-dihydroxy analog of the potent actin inhibitor latrunculin A. Latrunculol A has exhibited greater cytotoxicity than latrunculin A against both murine and human colon tumor cell lines in vitro. Currently, there are no reports regarding the bioavailability of latrunculol A in vivo. This study was undertaken as a prelude to pharmacokinetic assessments and it is the first work where bioavailability of latrunculol A was studied. In the present work, a simple plasma preparation and a rapid HPLC method have been developed. Mouse plasma containing latrunculol A was first treated by acetonitrile and then centrifuged …


Mass Stranding Of Marine Birds Caused By A Surfactant-Producing Red Tide., David A. Jessup, Melissa A. Miller, John P. Ryan, Hannah M Nevins, Heather A. Kerkering, Abdou Mekebri, David B. Crane, Tyler A. Johnson, Raphael M. Kudela Feb 2019

Mass Stranding Of Marine Birds Caused By A Surfactant-Producing Red Tide., David A. Jessup, Melissa A. Miller, John P. Ryan, Hannah M Nevins, Heather A. Kerkering, Abdou Mekebri, David B. Crane, Tyler A. Johnson, Raphael M. Kudela

Tyler Johnson

In November-December 2007 a widespread seabird mortality event occurred in Monterey Bay, California, USA, coincident with a massive red tide caused by the dinoflagellate Akashiwo sanguinea. Affected birds had a slimy yellow-green material on their feathers, which were saturated with water, and they were severely hypothermic. We determined that foam containing surfactant-like proteins, derived from organic matter of the red tide, coated their feathers and neutralized natural water repellency and insulation. No evidence of exposure to petroleum or other oils or biotoxins were found. This is the first documented case of its kind, but previous similar events may have gone …


Myxobacteria Versus Sponge-Derived Alkaloids: The Bengamide Family Identified As Potent Immune Modulating Agents By Scrutiny Of Lc-Ms/Elsd Libraries., Tyler A. Johnson, Johann Sohn, Yvette M Vaske, Kimberly N White, Tanya L Cohen, Helene C Vervoort, Karen Tenney, Frederick A Valeriote, Leonard F Bjeldanes, Phillip Crews Feb 2019

Myxobacteria Versus Sponge-Derived Alkaloids: The Bengamide Family Identified As Potent Immune Modulating Agents By Scrutiny Of Lc-Ms/Elsd Libraries., Tyler A. Johnson, Johann Sohn, Yvette M Vaske, Kimberly N White, Tanya L Cohen, Helene C Vervoort, Karen Tenney, Frederick A Valeriote, Leonard F Bjeldanes, Phillip Crews

Tyler Johnson

A nuclear factor-κB (NF-κB) luciferase assay has been employed to identify the bengamides, previously known for their anti-tumor activity, as a new class of immune modulators. A unique element of this study was that the bengamide analogs were isolated from two disparate sources, Myxococcus virescens (bacterium) and Jaspis coriacea (sponge). Comparative LC-MS/ELSD and NMR analysis facilitated the isolation of M. viriscens derived samples of bengamide E (8) and two congeners, bengamide E' (13) and F' (14) each isolated as an insperable mixture of diastereomers. Additional compounds drawn from the UC, Santa Cruz repository allowed expansion of the structure activity relationship …


The Marine Sponge Metabolite Mycothiazole: A Novel Prototype Mitochondrial Complex I Inhibitor., J Brian Morgan, Fakhri Mahdi, Yang Liu, Veena Coothankandaswamy, Mika B Jekabsons, Tyler A. Johnson, Koneni V Sashidhara, Phillip Crews, Dale G Nagle, Yu-Dong Zhou Feb 2019

The Marine Sponge Metabolite Mycothiazole: A Novel Prototype Mitochondrial Complex I Inhibitor., J Brian Morgan, Fakhri Mahdi, Yang Liu, Veena Coothankandaswamy, Mika B Jekabsons, Tyler A. Johnson, Koneni V Sashidhara, Phillip Crews, Dale G Nagle, Yu-Dong Zhou

Tyler Johnson

A natural product chemistry-based approach was applied to discover small-molecule inhibitors of hypoxia-inducible factor-1 (HIF-1). A Petrosaspongia mycofijiensis marine sponge extract yielded mycothiazole (1), a solid tumor selective compound with no known mechanism for its cell line-dependent cytotoxic activity. Compound 1 inhibited hypoxic HIF-1 signaling in tumor cells (IC(50) 1nM) that correlated with the suppression of hypoxia-stimulated tumor angiogenesis in vitro. However, 1 exhibited pronounced neurotoxicity in vitro. Mechanistic studies revealed that 1 selectively suppresses mitochondrial respiration at complex I (NADH-ubiquinone oxidoreductase). Unlike rotenone, MPP(+), annonaceous acetogenins, piericidin A, and other complex I inhibitors, mycothiazole is a mixed polyketide/peptide-derived compound …


Lipophilic Stinging Nettle Extracts Possess Potent Anti-Inflammatory Activity, Are Not Cytotoxic And May Be Superior To Traditional Tinctures For Treating Inflammatory Disorders., Tyler A. Johnson, Johann Sohn, Wayne D Inman, Leonard F Bjeldanes, Keith Rayburn Feb 2019

Lipophilic Stinging Nettle Extracts Possess Potent Anti-Inflammatory Activity, Are Not Cytotoxic And May Be Superior To Traditional Tinctures For Treating Inflammatory Disorders., Tyler A. Johnson, Johann Sohn, Wayne D Inman, Leonard F Bjeldanes, Keith Rayburn

Tyler Johnson

Extracts of four plant portions (roots, stems, leaves and flowers) of Urtica dioica (the stinging nettle) were prepared using accelerated solvent extraction (ASE) involving water, hexanes, methanol and dichloromethane. The extracts were evaluated for their anti-inflammatory and cytotoxic activities in an NF-κB luciferase and MTT assay using macrophage immune (RAW264.7) cells. A standardized commercial ethanol extract of nettle leaves was also evaluated. The methanolic extract of the flowering portions displayed significant anti-inflammatory activity on par with a standard compound celastrol (1) but were moderately cytotoxic. Alternatively, the polar extracts (water, methanol, ethanol) of the roots, stems and leaves displayed moderate …


The Glia Response After Peripheral Nerve Injury: A Comparison Between Schwann Cells And Olfactory Ensheathing Cells And Their Uses For Neural Regenerative Therapies, Matthew J Barton, James St John, Alison Wright, Jenny Ekberg Jun 2017

The Glia Response After Peripheral Nerve Injury: A Comparison Between Schwann Cells And Olfactory Ensheathing Cells And Their Uses For Neural Regenerative Therapies, Matthew J Barton, James St John, Alison Wright, Jenny Ekberg

Jenny Ekberg

The peripheral nervous system (PNS) exhibits a much larger capacity for regeneration than the central nervous system (CNS). One reason for this difference is the difference in glial cell types between the two systems. PNS glia respond rapidly to nerve injury by clearing debris from the injury site, supplying essential growth factors and providing structural support; all of which enhances neuronal regeneration. Thus, transplantation of glial cells from the PNS is a very promising therapy for injuries to both the PNS and the CNS. There are two key types of PNS glia: olfactory ensheathing cells (OECs), which populate the olfactory …


An Analysis Of The Use Of Animal Models In Predicting Human Toxicology And Drug Safety, Jarrod Bailey, Michelle Thew, Michael Balls Sep 2016

An Analysis Of The Use Of Animal Models In Predicting Human Toxicology And Drug Safety, Jarrod Bailey, Michelle Thew, Michael Balls

Jarrod Bailey, PhD

Animal use continues to be central to preclinical drug development, in spite of a lack of its demonstrable validity. The current nadir of new drug approvals and the drying-up of pipelines may be a direct consequence of this. To estimate the evidential weight given by animal data to the probability that a new drug may be toxic to humans, we have calculated Likelihood Ratios (LRs) for an extensive data set of 2,366 drugs, for which both animal and human data are available, including tissue-level effects and MedDRA Level 1–4 biomedical observations. This was done for three preclinical species (rat, mouse …


Wild Justice Redux: What We Know About Social Justice In Animals And Why It Matters, Jessica Pierce, Marc Bekoff Sep 2016

Wild Justice Redux: What We Know About Social Justice In Animals And Why It Matters, Jessica Pierce, Marc Bekoff

Marc Bekoff, PhD

Social justice in animals is beginning to attract interest in a broad range of academic disciplines. Justice is an important area of study because it may help explain social dynamics among individuals living in tightly- knit groups, as well as social interactions among individuals who only occasionally meet. In this paper, we provide an overview of what is currently known about social justice in animals and offer an agenda for further research. We provide working definitions of key terms, outline some central research questions, and explore some of the challenges of studying social justice in animals, as well as the …


The Ethics Of Wildlife Control In Humanized Landscapes, John Hadidian, Camilla H. Fox, William S. Lynn Aug 2016

The Ethics Of Wildlife Control In Humanized Landscapes, John Hadidian, Camilla H. Fox, William S. Lynn

William S. Lynn, PhD

The 21st century is witness to an unprecedented and rapid growth of human settlements, from urban centers to wilderness vacation resorts. Concurrent with this has been the growing tolerance and acceptance of many wild animals and humans for one another. This has created an expanding ‘zone’ of human-animal contacts, some number of which invariably result in conflicts. While the vast majority of our interactions with wild animals are undoubtedly benign, it is the conflict between wildlife and people that draws particularly close attention from the public. Animals viewed as vertebrate “pests” range from the small to the large, the timid …


Bone Morphogenetic Protein Receptor Type Ia Localization Causes Increased Bmp2 Signaling In Mice Exhibiting Increased Peak Bone Mass Phenotype., Beth Bragdon, Jeremy Bonor, Kathryn L Shultz, Wesley G Beamer, Clifford J Rosen, Anja Nohe Jan 2016

Bone Morphogenetic Protein Receptor Type Ia Localization Causes Increased Bmp2 Signaling In Mice Exhibiting Increased Peak Bone Mass Phenotype., Beth Bragdon, Jeremy Bonor, Kathryn L Shultz, Wesley G Beamer, Clifford J Rosen, Anja Nohe

Clifford J Shultz

Bone morphogenetic protein 2 (BMP2) is a growth factor that initiates osteoblast differentiation. Recent studies show that BMP2 signaling regulates bone mineral density (BMD). BMP2 interacts with BMP receptor type Ia (BMPRIa) and type II receptor leading to the activation of the Smad signaling pathway. BMPRIa must shuttle between distinct plasma membrane domains, enriched of Caveolin-1 alpha and Caveolin-1 beta isoforms, and receptor activation occurs in these domains. Yet it remains unknown whether the molecular mechanism that regulates BMP2 signaling is driving mineralization and BMD. Therefore, the B6.C3H-1-12 congenic mouse model with increased BMD and osteoblast mineralization was utilized in …


Animal Cryptochromes Mediate Magnetoreception By An Unconventional Photochemical Mechanism, Robert Gegear, Lauren Foley, Amy Casselman, Steven Reppert Dec 2015

Animal Cryptochromes Mediate Magnetoreception By An Unconventional Photochemical Mechanism, Robert Gegear, Lauren Foley, Amy Casselman, Steven Reppert

Robert J. Gegear

Understanding the biophysical basis of animal magnetoreception has been one of the greatest challenges in sensory biology. Recently it was discovered that the light-dependent magnetic sense of Drosophila melanogaster is mediated by the ultraviolet (UV)-A/blue light photoreceptor cryptochrome (Cry). Here we show, using a transgenic approach, that the photoreceptive, Drosophila-like type 1 Cry and the transcriptionally repressive, vertebrate-like type 2 Cry of the monarch butterfly (Danaus plexippus) can both function in the magnetoreception system of Drosophila and require UV-A/blue light (wavelength below 420 nm) to do so. The lack of magnetic responses for both Cry types at wavelengths above 420 …


Genetic And Acute Cpeb1 Depletion Ameliorate Fragile X Pathophysiology, Tsuyoshi Udagawa, Natalie Farny, Mira Jakovcevski, Hanoch Kaphzan, Juan Alarcon, Shobha Anilkumar, Maria Ivshina, Jessica Hurt, Kentaro Nagaoka, Vijayalaxmi Nalavadi, Lori Lorenz, Gary Bassell, Schahram Akbarian, Sumantra Chattarji, Eric Klann, Joel Richter Dec 2015

Genetic And Acute Cpeb1 Depletion Ameliorate Fragile X Pathophysiology, Tsuyoshi Udagawa, Natalie Farny, Mira Jakovcevski, Hanoch Kaphzan, Juan Alarcon, Shobha Anilkumar, Maria Ivshina, Jessica Hurt, Kentaro Nagaoka, Vijayalaxmi Nalavadi, Lori Lorenz, Gary Bassell, Schahram Akbarian, Sumantra Chattarji, Eric Klann, Joel Richter

Natalie G. Farny

Fragile X syndrome (FXS), the most common cause of inherited mental retardation and autism, is caused by transcriptional silencing of FMR1, which encodes the translational repressor fragile X mental retardation protein (FMRP). FMRP and cytoplasmic polyadenylation element-binding protein (CPEB), an activator of translation, are present in neuronal dendrites, are predicted to bind many of the same mRNAs and may mediate a translational homeostasis that, when imbalanced, results in FXS. Consistent with this possibility, Fmr1(-/y); Cpeb1(-/-) double-knockout mice displayed amelioration of biochemical, morphological, electrophysiological and behavioral phenotypes associated with FXS. Acute depletion of CPEB1 in the hippocampus of adult Fmr1(-/y) mice …


Influence Of Env And Long Terminal Repeat Sequences On The Tissue Tropism Of Avian Leukosis Viruses, David Brown, Harriet Robinson Dec 2015

Influence Of Env And Long Terminal Repeat Sequences On The Tissue Tropism Of Avian Leukosis Viruses, David Brown, Harriet Robinson

David C. Brown

Adsorption and penetration of retroviruses into eucaryotic cells is mediated by retroviral envelope glycoproteins interacting with host receptors. Recombinant avian leukosis viruses (ALVs) differing only in envelope determinants that interact with host receptors for subgroup A or E ALVs have been found to have unexpectedly distinctive patterns of tissue-specific replication. Recombinants of both subgroups were highly expressed in bursal lymphocytes as well as in cultured chicken embryo fibroblasts. In contrast, the subgroup A but not subgroup E host range allowed high levels of expression in skeletal muscle, while subgroup E but not subgroup A envelope glycoproteins permitted efficient replication in …


Infection Of Peripancreatic Lymph Nodes But Not Islets Precedes Kilham Rat Virus-Induced Diabetes In Bb/Wor Rats, David Brown, Raymond Welsh, Arthur Like Dec 2015

Infection Of Peripancreatic Lymph Nodes But Not Islets Precedes Kilham Rat Virus-Induced Diabetes In Bb/Wor Rats, David Brown, Raymond Welsh, Arthur Like

David C. Brown

A parvovirus serologically identified as Kilham rat virus (KRV) reproducibly induces acute type I diabetes in diabetes-resistant BB/Wor rats. The tissue tropism of KRV was investigated by in situ hybridization with a digoxigenin-labelled plasmid DNA probe containing approximately 1.6 kb of the genome of the UMass isolate of KRV. Partial sequencing of the KRV probe revealed high levels of homology to the sequence of minute virus of mice (89%) and to the sequence of H1 (99%), a parvovirus capable of infecting rats and humans. Of the 444 bases sequenced, 440 were shared by H1. KRV mRNA and DNA were readily …


Biaxial Failure Properties Of Planar Living Tissue Equivalents, Kristen Billiar, Angela Throm, Margo Frey Dec 2015

Biaxial Failure Properties Of Planar Living Tissue Equivalents, Kristen Billiar, Angela Throm, Margo Frey

Kristen L. Billiar

Quantification of the mechanical properties of living tissue equivalents (LTEs) is essential for assessing their ultimate functionality as tissue substitutes, yet their delicate nature makes failure testing problematic. For this study, we evaluated the validity of using an inflation device for quantifying the biaxial tensile failure properties of extremely delicate fibroblast-populated collagen gels (CGs) and fibrin gels (FGs). Small samples were circularly clamped and then inflated until rupture. Each sample assumed an approximately spherical shape and burst at its center indicating effective clamping. After two weeks in culture, all LTEs tested were fragile, but the FGs were significantly stronger and …


Navigational Mechanisms Of Migrating Monarch Butterflies, Steven Reppert, Robert Gegear, Christine Merlin Dec 2015

Navigational Mechanisms Of Migrating Monarch Butterflies, Steven Reppert, Robert Gegear, Christine Merlin

Robert J. Gegear

Recent studies of the iconic fall migration of monarch butterflies have illuminated the mechanisms behind their southward navigation while using a time-compensated sun compass. Skylight cues, such as the sun itself and polarized light, are processed through both eyes and are probably integrated in the brain's central complex, the presumed site of the sun compass. Time compensation is provided by circadian clocks that have a distinctive molecular mechanism and that reside in the antennae. Monarchs might also use a magnetic compass because they possess two cryptochromes that have the molecular capability for light-dependent magnetoreception. Multiple genomic approaches are now being …


Substrate Rigidity Regulates The Formation And Maintenance Of Tissues, Wei-Hui Guo, Margo Frey, Nancy Burnham, Yu-Li Wang Dec 2015

Substrate Rigidity Regulates The Formation And Maintenance Of Tissues, Wei-Hui Guo, Margo Frey, Nancy Burnham, Yu-Li Wang

Nancy A. Burnham

The ability of cells to form tissues represents one of the most fundamental issues in biology. However, it is unclear what triggers cells to adhere to one another in tissues and to migrate once a piece of tissue is planted on culture surfaces. Using substrates of identical chemical composition but different flexibility, we show that this process is controlled by substrate rigidity: on stiff substrates, cells migrate away from one another and spread on surfaces, whereas on soft substrates they merge to form tissue-like structures. Similar behavior was observed not only with fibroblastic and epithelial cell lines but also explants …


Discordant Timing Between Antennae Disrupts Sun Compass Orientation In Migratory Monarch Butterflies, Patrick Guerra, Christine Merlin, Robert Gegear, Steven Reppert Dec 2015

Discordant Timing Between Antennae Disrupts Sun Compass Orientation In Migratory Monarch Butterflies, Patrick Guerra, Christine Merlin, Robert Gegear, Steven Reppert

Robert J. Gegear

To navigate during their long-distance migration, monarch butterflies (Danaus plexippus) use a time-compensated sun compass. The sun compass timing elements reside in light-entrained circadian clocks in the antennae. Here we show that either antenna is sufficient for proper time compensation. However, migrants with either antenna painted black (to block light entrainment) and the other painted clear (to permit light entrainment) display disoriented group flight. Remarkably, when the black-painted antenna is removed, re-flown migrants with a single, clear-painted antenna exhibit proper orientation behaviour. Molecular correlates of clock function reveal that period and timeless expression is highly rhythmic in brains and clear-painted …


Antennal Circadian Clocks Coordinate Sun Compass Orientation In Migratory Monarch Butterflies, Christine Merlin, Robert Gegear, Steven Reppert Dec 2015

Antennal Circadian Clocks Coordinate Sun Compass Orientation In Migratory Monarch Butterflies, Christine Merlin, Robert Gegear, Steven Reppert

Robert J. Gegear

During their fall migration, Eastern North American monarch butterflies (Danaus plexippus) use a time-compensated Sun compass to aid navigation to their overwintering grounds in central Mexico. It has been assumed that the circadian clock that provides time compensation resides in the brain, although this assumption has never been examined directly. Here, we show that the antennae are necessary for proper time-compensated Sun compass orientation in migratory monarch butterflies, that antennal clocks exist in monarchs, and that they likely provide the primary timing mechanism for Sun compass orientation. These unexpected findings pose a novel function for the antennae and open a …


Human Cryptochrome Exhibits Light-Dependent Magnetosensitivity, Lauren Foley, Robert Gegear, Steven Reppert Dec 2015

Human Cryptochrome Exhibits Light-Dependent Magnetosensitivity, Lauren Foley, Robert Gegear, Steven Reppert

Robert J. Gegear

Humans are not believed to have a magnetic sense, even though many animals use the Earth's magnetic field for orientation and navigation. One model of magnetosensing in animals proposes that geomagnetic fields are perceived by light-sensitive chemical reactions involving the flavoprotein cryptochrome (CRY). Here we show using a transgenic approach that human CRY2, which is heavily expressed in the retina, can function as a magnetosensor in the magnetoreception system of Drosophila and that it does so in a light-dependent manner. The results show that human CRY2 has the molecular capability to function as a light-sensitive magnetosensor and reopen an area …


Cd4+ Regulatory T Cells Require Ctla-4 For The Maintenance Of Systemic Tolerance, Randall Friedline, David Brown, Hai Nguyen, Hardy Kornfeld, Jinhee Lee, Yi Zhang, Mark Appleby, Sandy Der, Joonsoo Kang, Cynthia Chambers Dec 2015

Cd4+ Regulatory T Cells Require Ctla-4 For The Maintenance Of Systemic Tolerance, Randall Friedline, David Brown, Hai Nguyen, Hardy Kornfeld, Jinhee Lee, Yi Zhang, Mark Appleby, Sandy Der, Joonsoo Kang, Cynthia Chambers

David C. Brown

Cytotoxic T lymphocyte antigen-4 (CTLA-4) plays a critical role in negatively regulating T cell responses and has also been implicated in the development and function of natural FOXP3(+) regulatory T cells. CTLA-4-deficient mice develop fatal, early onset lymphoproliferative disease. However, chimeric mice containing both CTLA-4-deficient and -sufficient bone marrow (BM)-derived cells do not develop disease, indicating that CTLA-4 can act in trans to maintain T cell self-tolerance. Using genetically mixed blastocyst and BM chimaeras as well as in vivo T cell transfer systems, we demonstrate that in vivo regulation of Ctla4(-/-) T cells in trans by CTLA-4-sufficient T cells is …


Defining Behavioral And Molecular Differences Between Summer And Migratory Monarch Butterflies, Haisun Zhu, Robert Gegear, Amy Casselman, Sriramana Kanginakudru, Steven Reppert Dec 2015

Defining Behavioral And Molecular Differences Between Summer And Migratory Monarch Butterflies, Haisun Zhu, Robert Gegear, Amy Casselman, Sriramana Kanginakudru, Steven Reppert

Robert J. Gegear

BACKGROUND: In the fall, Eastern North American monarch butterflies (Danaus plexippus) undergo a magnificent long-range migration. In contrast to spring and summer butterflies, fall migrants are juvenile hormone deficient, which leads to reproductive arrest and increased longevity. Migrants also use a time-compensated sun compass to help them navigate in the south/southwesterly direction en route for Mexico. Central issues in this area are defining the relationship between juvenile hormone status and oriented flight, critical features that differentiate summer monarchs from fall migrants, and identifying molecular correlates of behavioral state. RESULTS: Here we show that increasing juvenile hormone activity to induce summer-like …


Rna Recognition By The Caenorhabditis Elegans Oocyte Maturation Determinant Oma-1, Ebru Kaymak, Sean Ryder Oct 2015

Rna Recognition By The Caenorhabditis Elegans Oocyte Maturation Determinant Oma-1, Ebru Kaymak, Sean Ryder

Sean P. Ryder

Maternally supplied mRNAs encode proteins that pattern early embryos in many species. In the nematode Caenorhabditis elegans, a suite of RNA-binding proteins regulates expression of maternal mRNAs during oogenesis, the oocyte to embryo transition, and early embryogenesis. To understand how these RNA-binding proteins contribute to development, it is necessary to determine how they select specific mRNA targets for regulation. OMA-1 and OMA-2 are redundant proteins required for oocyte maturation--an essential part of meiosis that prepares oocytes for fertilization. Both proteins have CCCH type tandem zinc finger RNA-binding domains. Here, we define the RNA binding specificity of OMA-1 and demonstrate that …


A Conserved Three-Nucleotide Core Motif Defines Musashi Rna Binding Specificity, Nancy Zearfoss, Laura Deveau, Carina Clingman, Eric Schmidt, Emily Johnson, Francesca Massi, Sean Ryder Sep 2015

A Conserved Three-Nucleotide Core Motif Defines Musashi Rna Binding Specificity, Nancy Zearfoss, Laura Deveau, Carina Clingman, Eric Schmidt, Emily Johnson, Francesca Massi, Sean Ryder

Sean P. Ryder

Musashi (MSI) family proteins control cell proliferation and differentiation in many biological systems. They are overexpressed in tumors of several origins, and their expression level correlates with poor prognosis. MSI proteins control gene expression by binding RNA and regulating its translation. They contain two RNA recognition motif (RRM) domains, which recognize a defined sequence element. The relative contribution of each nucleotide to the binding affinity and specificity is unknown. We analyzed the binding specificity of three MSI family RRM domains using a quantitative fluorescence anisotropy assay. We found that the core element driving recognition is the sequence UAG. Nucleotides outside …


Allosteric Inhibition Of A Stem Cell Rna-Binding Protein By An Intermediary Metabolite, Carina Clingman, Laura Deveau, Samantha Hay, Ryan Genga, Shivender Shandilya, Francesca Massi, Sean Ryder Sep 2015

Allosteric Inhibition Of A Stem Cell Rna-Binding Protein By An Intermediary Metabolite, Carina Clingman, Laura Deveau, Samantha Hay, Ryan Genga, Shivender Shandilya, Francesca Massi, Sean Ryder

Sean P. Ryder

Gene expression and metabolism are coupled at numerous levels. Cells must sense and respond to nutrients in their environment, and specialized cells must synthesize metabolic products required for their function. Pluripotent stem cells have the ability to differentiate into a wide variety of specialized cells. How metabolic state contributes to stem cell differentiation is not understood. In this study, we show that RNA-binding by the stem cell translation regulator Musashi-1 (MSI1) is allosterically inhibited by 18-22 carbon omega-9 monounsaturated fatty acids. The fatty acid binds to the N-terminal RNA Recognition Motif (RRM) and induces a conformational change that prevents RNA …


Differential Expression Of Ape1 And Ape2 In Germinal Centers Promotes Error-Prone Repair And A:T Mutations During Somatic Hypermutation, Janet Stavnezer, Erin K. Linehan, Mikayla R. Thompson, Ghaith Habboub, Anna J. Ucher, Tatenda Kadungure, Daisuke Tsuchimoto, Yusaku Nakabeppu, Carol E. Schrader Aug 2015

Differential Expression Of Ape1 And Ape2 In Germinal Centers Promotes Error-Prone Repair And A:T Mutations During Somatic Hypermutation, Janet Stavnezer, Erin K. Linehan, Mikayla R. Thompson, Ghaith Habboub, Anna J. Ucher, Tatenda Kadungure, Daisuke Tsuchimoto, Yusaku Nakabeppu, Carol E. Schrader

Janet M. Stavnezer

Somatic hypermutation (SHM) of antibody variable region genes is initiated in germinal center B cells during an immune response by activation-induced cytidine deaminase (AID), which converts cytosines to uracils. During accurate repair in nonmutating cells, uracil is excised by uracil DNA glycosylase (UNG), leaving abasic sites that are incised by AP endonuclease (APE) to create single-strand breaks, and the correct nucleotide is reinserted by DNA polymerase beta. During SHM, for unknown reasons, repair is error prone. There are two APE homologs in mammals and, surprisingly, APE1, in contrast to its high expression in both resting and in vitro-activated splenic B …