Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

PDF

Mark R Wilson

Selected Works

2013

Protein

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Macroglobulin And Haptoglobin Suppress Amyloid Formation By Interacting With Prefibrillar Protein Species, Justin J. Yerbury, Janet R. Kumita, Sarah Meehan, Christopher M. Dobson, Mark R. Wilson May 2013

Macroglobulin And Haptoglobin Suppress Amyloid Formation By Interacting With Prefibrillar Protein Species, Justin J. Yerbury, Janet R. Kumita, Sarah Meehan, Christopher M. Dobson, Mark R. Wilson

Mark R Wilson

α2-Macroglobulin (α2M) and haptoglobin (Hp) are both abundant secreted glycoproteins that are best known for their protease trapping and hemoglobin binding activities, respectively. Like the small heat shock proteins, both these glycoproteins have in common the ability to protect a range of proteins from stress-induced amorphous aggregation and have been described as extracellular chaperones. Using an array of biophysical techniques, this study establishes that in vitro at substoichiometric levels and under physiological conditions α2M and Hp both inhibit the formation of amyloid fibrils from a range of proteins. We also provide evidence that both α2M and Hp interact with prefibrillar …


Therapeutic Targets In Extracellular Protein Deposition Diseases, Amy R. Wyatt, Justin J. Yerbury, Stephen Poon, Mark R. Wilson May 2013

Therapeutic Targets In Extracellular Protein Deposition Diseases, Amy R. Wyatt, Justin J. Yerbury, Stephen Poon, Mark R. Wilson

Mark R Wilson

Many litres of fluids are found outside cells in the human body. These fluids are rich in dissolved proteins that each have a characteristic three dimensional shape, necessary for normal function, which has been attained by the correct folding of their polypeptide chain(s). The structure of these extracellular proteins can be damaged by a variety of environmental stresses (e. g. heat and oxidation) leading to their partial unfolding and aggregation. This in turn can produce toxic soluble aggregates and/or large insoluble protein deposits, either of which can disrupt normal body function (e. g. in Alzheimer's disease and the systemic amyloidoses). …