Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

PDF

MSU Graduate Theses

Theses/Dissertations

Quantum dots

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Quantum Dots' Toxicity: A Multi-Level Investigation On The Impact Of Quantum Dots On The Actin Cytoskeleton, Nhi Le Jan 2024

Quantum Dots' Toxicity: A Multi-Level Investigation On The Impact Of Quantum Dots On The Actin Cytoskeleton, Nhi Le

MSU Graduate Theses

Quantum dots (QDs) are fluorescence nanomaterials with unique optical and physical properties. As such, they are highly sought after for their potential use in several biomedical and industrial applications. Despite their vast potential, recent studies have suggested that quantum dots are toxic to cells. Yet, the mechanism of quantum dots’ toxicity remains unclear. As such, my thesis aims to comprehensively examine the mechanism of quantum dots’ toxicity, emphasizing how quantum dots disrupt the actin cytoskeleton. In this study, I used RNA sequencing and mass spectrometry to investigate the influence of CdSe/ZnS QDs on the transcriptomic proteomic level of Saccharomyces cerevisiae …


Intracellular Trafficking And Distribution Of Cd And Inp Quantum Dots In Hela And Ml-1 Thyroid Cancer Cells, Min Zhang Jan 2022

Intracellular Trafficking And Distribution Of Cd And Inp Quantum Dots In Hela And Ml-1 Thyroid Cancer Cells, Min Zhang

MSU Graduate Theses

The study of the interaction of engineered nanoparticles, including quantum dots (QDs), with cellular constituents and the kinetics of their localization and transport, has provided new insights into their biological consequences in cancers and for the development of effective cancer therapies. The present study aims to elucidate the toxicity and intracellular transport kinetics of CdSe/ZnS and InP/ZnS QDs in late-stage ML-1 thyroid cancer using well-tested HeLa cells as a control. The XTT viability assay showed that ML-1 cells, and non-cancerous mouse fibroblast cells, exhibit no viability defect in response to these QDs, whereas HeLa cell viability decreases. These results suggest …


Effect Of Silver And Cadmium Nanoparticles On Endocytosis And Protein Recycling In Yeast, Lakshmi Sravya Rallabandi May 2020

Effect Of Silver And Cadmium Nanoparticles On Endocytosis And Protein Recycling In Yeast, Lakshmi Sravya Rallabandi

MSU Graduate Theses

Endocytosis is a highly regulated process crucial for recycling of plasma membrane proteins and lipids. Derailments in this trafficking pathway pose threat to normal functioning of somatic cells. Engineered nanoparticles are used extensively in industry due to unique physicochemical properties. However, these nanoparticles, at high concentrations are known to create toxic effects on biological tissues. With this recent information, I investigated the potential toxicity of silver nanoparticles (AgNP) and cadmium selenium/zinc sulfide (CdSe/ZnS) quantum dots (QDs) on liquid phase endocytosis pathway in Saccharomyces cerevisiae. My data provided evidence that treatment of yeast cells with AgNP and CdSe/ZnS QDs resulted …


Functionalization Of Indium-Based Quantum Dots For Use As A Non-Viral Gene Therapy Vector, Nicholas A. Mundt Aug 2017

Functionalization Of Indium-Based Quantum Dots For Use As A Non-Viral Gene Therapy Vector, Nicholas A. Mundt

MSU Graduate Theses

This work aims to develop functionalized, water-soluble indium-based quantum dots (QDs) as a non-viral gene therapy vector. The QDs were solubilized in water by exchanging native hydrophobic surface ligands with 11-mercaptoundecanioc acid (MUA); an amphiphilic ligand providing terminal carboxylate groups that impart water solubility to the QDs. The aqueous QDs were then functionalized with a terminal tertiary amine to impart a positive surface charge, allowing negatively-charged DNA to complex with the nanoparticles. The QDs were characterized via electrophoresis to determine their ability to bind DNA. Results show that further work is needed to optimize DNA binding. In addition, this work …


The Effects Of Carbon Nanotubes And Silver Quantum Dots On Gas Exchange In Arabidopsis Thaliana, Maryam Ibrahim Subaylaa May 2017

The Effects Of Carbon Nanotubes And Silver Quantum Dots On Gas Exchange In Arabidopsis Thaliana, Maryam Ibrahim Subaylaa

MSU Graduate Theses

Engineered nanoparticles (ENPs) are increasingly being used in commercial products, and may accumulate in soils when the products are disposed. I examined the effects of two common ENPs, carbon nanotubes (CNTs) and silver quantum dots (Ag-QDs), on plant gas exchange. To do this, I grew Arabidopsis thaliana in soil (n=36) for 6 weeks and added a CNT suspension at increasing concentrations (10, 30, 90, 150, 190, 250 μg/ ml) each week. I also grew A. thaliana in petri dishes (n=83) containing Murashige and Skoog (MS) medium, with a concentration of 4μg/ ml Ag-QDs or 4μg/ml CNTs. I measured carbon assimilation …