Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 64

Full-Text Articles in Entire DC Network

Development Of A Novel Class Of Chemicals For Labeling Abasic Sites In Cellular Dna And Killing Cancer Cells, Shanqiao Wei Sep 2016

Development Of A Novel Class Of Chemicals For Labeling Abasic Sites In Cellular Dna And Killing Cancer Cells, Shanqiao Wei

Wayne State University Dissertations

Abasic (AP) sites are the most common type of lesions in DNA. Numerous endogenous and exogenous agents and cellular processes can induce the formation of AP sites in DNA. If left unrepaired, the deleterious AP sites cause mutagenesis and cytotoxicity. Methoxyamine is known to react with AP sites and block base excision repair. Another alkoxyamine, aldehyde-reactive probe (ARP) tags AP sites with a biotin and has been widely used to quantify these sites. In this study, I have combined both these abilities into one alkoxyamine, AA3, which reacts toward AP sites with better reactivity than ARP at physiological pH. Additionally, …


The Roles Of Human Cytomegalovirus Tegument Proteins Pul48 And Pul103 During Lytic Infection, Daniel Angel Ortiz Jan 2016

The Roles Of Human Cytomegalovirus Tegument Proteins Pul48 And Pul103 During Lytic Infection, Daniel Angel Ortiz

Wayne State University Dissertations

THE ROLES OF HUMAN CYTOMEGALOVIRUS TEGUMENT PROTEINS pUL48 AND pUL103 DURING LYTIC INFECTION

by

DANIEL A. ORTIZ

December 2015

Advisor: Dr. Philip E. Pellett

Major: Immunology and Microbiology

Degree: Doctor of Philosophy

Human cytomegalovirus (HCMV) is a large double-stranded DNA virus that causes severe disease in newborns and immunocompromised patients. During infection, HCMV is able to reconfigure the host cell machinery to establish a virus producing factory, termed the cytoplasmic virion assembly complex (cVAC). Generating drugs that affect cVAC development or function provides an alternative mode of action for HCMV antivirals that can essentially eliminate virion production. The objective of …


Insights Into De Novo Fes-Cluster Biogenesis Via The Eukaryotic Fes-Cluster (Isc) Pathway In Vitro, Stephen Paul Dzul Jan 2016

Insights Into De Novo Fes-Cluster Biogenesis Via The Eukaryotic Fes-Cluster (Isc) Pathway In Vitro, Stephen Paul Dzul

Wayne State University Dissertations

Fe-S clusters are iron-containing cofactors utilized by numerous proteins within several biological pathways essential to life. In eukaryotes, the primary pathway for Fe-S cluster production is the iron-sulfur cluster (ISC) pathway. The eukaryotic ISC pathway, localized primarily within the mitochondria, has been best characterized within Saccharomyces cerevisiae. In yeast, de novo Fe-S cluster formation is accomplished through coordinated assembly of the substrates iron and sulfur on the primary scaffold assembly protein “Isu1”. The sulfur used for cluster assembly is provided by the cysteine desulfurase “Nfs1”, a protein that works in union with its accessory protein “Isd11”. Frataxin “Yfh1” helps direct …


Effective Drug Treatment Induces Drug Resistance Through Rapid Genome Alteration-Mediated Cancer Evolution, Steven Horne Jan 2016

Effective Drug Treatment Induces Drug Resistance Through Rapid Genome Alteration-Mediated Cancer Evolution, Steven Horne

Wayne State University Dissertations

The central paradox associated with current cancer therapeutic strategies is initially effective treatment, which eliminates a high tumor cell count, consistently results in successful drug resistance. Mathematical and evolutionary modeling have previously suggested that therapeutic intervention could provide selective pressure for the expansion of resistant variants. Drug-related stress has been associated with genome chaos, a common phenomenon in cancer characterized as rapid, stochastic genomic fragmentation and reorganization. Since cancer represents an evolutionary process, analysis within the context of genome-mediated cancer evolution can shed light on this key problem of therapeutics. We propose that genomic change is a general response to …


An Analysis Of The Interaction Between Sin3 And Methionine Metabolism In Drosophila, Mengying Liu Jan 2016

An Analysis Of The Interaction Between Sin3 And Methionine Metabolism In Drosophila, Mengying Liu

Wayne State University Dissertations

Chromatin modification and cellular metabolism are tightly connected. The mechanism for this cross-talk, however, remains incompletely understood. SIN3 controls histone acetylation through association with the histone deacetylase RPD3. In this study, my major goal is to explore the mechanism of how SIN3 regulates cellular metabolism.

Methionine metabolism generates the major methyl donor S-adenosylmethionine (SAM) for histone methylation. In collaboration with others, I report that reduced levels of some enzymes involved in methionine metabolism and histone demethylases lead to lethality, as well as wing development and cell proliferation defects in Drosophila melanogaster. Additionally, disruption of methionine metabolism can directly affect histone …


Calponin And Cytoskeleton Dynamics In Macrophage Functions And The Pathogenesis Of Atherosclerosis, Rong Liu Jan 2016

Calponin And Cytoskeleton Dynamics In Macrophage Functions And The Pathogenesis Of Atherosclerosis, Rong Liu

Wayne State University Dissertations

Arterial atherosclerosis is an inflammatory disease. Macrophages play a major role in the pathogenesis and progression of atherosclerotic lesions. Modulation of macrophage function is a therapeutic target for the treatment of atherosclerosis. Calponin is an actin-filament-associated regulatory protein that inhibits the activity of myosin-ATPase and dynamics of the actin cytoskeleton. Encoded by the Cnn2 gene, calponin isoform 2 is expressed at significant levels in macrophages. Deletion of calponin 2 increases macrophage migration and phagocytosis. In the present study, we investigated the effect of deletion of calponin 2 in macrophages on the pathogenesis and development of atherosclerosis. The results showed that …


A Critical Role Of Cxcr2 Pdz Motif-Mediated Interactions In Endothelial Progenitor Cell Homing And Angiogenesis, Yuning Hou Jan 2016

A Critical Role Of Cxcr2 Pdz Motif-Mediated Interactions In Endothelial Progenitor Cell Homing And Angiogenesis, Yuning Hou

Wayne State University Dissertations

Bone marrow-derived endothelial progenitor cells (EPCs) participate in postnatal vascularization in response to growth factors, cytokines, and chemokines. Chemokine receptor CXCR2 and its cognate ligands are reported to mediate EPC recruitment and angiogenesis. CXCR2 possesses a consensus PSD-95/DlgA/ZO-1 (PDZ) motif at its carboxyl terminus. The PDZ motif has been reported to regulate cellular signaling and functions. Here we investigated the potential role of the PDZ motif in CXCR2-mediated EPC motility and angiogenesis. We have found that introducing exogenous CXCR2 C-terminus significantly attenuated in vitro EPC migration and angiogenic activities in response to CXCR2 ligands, as well as in vivo EPC …


Muscle Metaboreflex And Arterial Baroreflex: Action, Interaction And Altered Control In Heart Failure, Jasdeep Kaur Jan 2016

Muscle Metaboreflex And Arterial Baroreflex: Action, Interaction And Altered Control In Heart Failure, Jasdeep Kaur

Wayne State University Dissertations

Stimulation of skeletal muscle afferents by metabolites that accumulate in the exercising muscle elicits a large pressor response, termed the muscle metaboreflex. Muscle metaboreflex activation during submaximal exercise induces large increases in arterial pressure, cardiac output, heart rate and ventricular contractility however, the vascular responses have varied in previous studies. We addressed three specific questions: 1) what are the mechanism(s) regulating the non-ischemic vasculature during muscle metaboreflex activation in normal subjects, 2) whether muscle metaboreflex activation vasoconstricts the ischemic active muscle from which this reflex originates and if this vasoconstriction is exaggerated in heart failure and 3) how do the …


The Effects Of Courtship And Pairing Behavior On The Nonapeptide And Noradrenergic Systems Of Adult Male And Female Zebra Finches, Erin Lowrey Ondercin Jan 2016

The Effects Of Courtship And Pairing Behavior On The Nonapeptide And Noradrenergic Systems Of Adult Male And Female Zebra Finches, Erin Lowrey Ondercin

Wayne State University Dissertations

Social relationships are complex and likely involve the multiple neural circuits, including those involved in learning, memory, motivation, and attention. Two neurotransmitter pathways highly involved in these neural circuits are norepinephrine (NE) and the nonapeptides, vasopressin (AVP) and oxytocin (OT). There is extensive research implicating a role for the nonapeptides in trust, sociality, parental care, and romantic relationships. There is little direct evidence for the role of nonapeptides in monogamous relationships in any species other than the prairie vole (Goodson 2013). However, there is evidence that nonapeptides are important in pair bonding for both male and female zebra finches (Lowrey …


Fuzzy Unheritance: A Novel Form Of Somatic Cell Inheritance That Regulates Cell Population Heterogeneity, Batoul Abdallah Jan 2016

Fuzzy Unheritance: A Novel Form Of Somatic Cell Inheritance That Regulates Cell Population Heterogeneity, Batoul Abdallah

Wayne State University Dissertations

Multi-level heterogeneity is a characteristic feature of cancer cell populations. However, how a cell population regulates and maintains its cell population heterogeneity is not well understood. Based on conventional theories of genetic inheritance, cell division is precise, where a daughter cell inherits an identical karyotype from its mother cell. Therefore, errors that are generated during cell division occur at low frequencies that take prolonged time periods to accumulate. However, the overwhelming heterogeneity found in unstable cancers is largely inconsistent with current models of genetic inheritance. In order to determine the mechanism of how heterogeneity is regulated, the pattern of inherited …


Investigation Of Mutations In Nuclear Genes That Affect The Atp Synthase, Russell Dsouza Jan 2016

Investigation Of Mutations In Nuclear Genes That Affect The Atp Synthase, Russell Dsouza

Wayne State University Dissertations

The F1 domain is the catalytic subunit of the mitochondrial ATP synthase. Studies with respiratory-deficient yeast identified ATP1 and ATP2 as nuclear genes encoding the alpha and beta subunits, respectively, of the mitochondrial F1-ATPase. The mutations in the atp1 and atp2 genes were cloned and sequenced, and they appear to affect the ATP synthase. Most yeast strains with mutations in the or the subunit primarily show an F1 assembly defective phenotype. This feature is similar to the assembly-defective mutants missing the chaperones required for assembly of the F1 oligomer or either the alpha/beta subunits.

Some of the atp2 and atp1 …


The Effects Of The N-Terminal Extensions Of Cardiac Troponins On The Ca2+ Regulation Of Myosin Atpase Kinetics In Cardiac Myofibrils, Laura Gunther Jan 2016

The Effects Of The N-Terminal Extensions Of Cardiac Troponins On The Ca2+ Regulation Of Myosin Atpase Kinetics In Cardiac Myofibrils, Laura Gunther

Wayne State University Dissertations

Contraction of cardiac muscle is the basis of heart function. Heart failure, i.e., weakened contraction of cardiac muscle is the most common cause of morbidity and mortality of heart diseases. Cardiac muscle contraction is regulated by calcium via the function of troponin, a protein complex associated with the myofilaments in muscle cells. The cardiac troponin subunits T (cTnT) and I (cTnI) have unique N-terminal extensions that can be selectively removed by restrictive proteolysis during cardiac adaptation to physiological and pathological stresses, indicating a role of these proteins in modulating cardiac contraction. This study aims to understand the effects of the …


A Novel Role For Repetitive Sequences In Recognition Of The Drosophila Melanogaster X Chromosome, Sonal Suresh Joshi Jan 2016

A Novel Role For Repetitive Sequences In Recognition Of The Drosophila Melanogaster X Chromosome, Sonal Suresh Joshi

Wayne State University Dissertations

In humans and fruit flies, males have one X chromosome while females have two. This imbalance in gene dosage is potentially lethal, and the process of dosage compensation corrects it. The MSL (Male Specific Lethal) complex, which is composed of five proteins and one of two functionally redundant long non-coding roX (RNA on the X) RNAs, brings about dosage compensation in Drosophila melanogaster. In fruit fly dosage compensation, all the genes on the single male X chromosome are upregulated approximately twofold, via chromatin modifications, to equalize gene dosage with the two X chromosomes of females. This process calls for highly …


Novel Regulatory Mechanisms Of Inositol Biosynthesis In Saccharomyces Cerevisiae And Mammalian Cells, And Implications For The Mechanism Underlying Vpa-Induced Glucose 6-Phosphate Depletion, Wenxi Yu Jan 2016

Novel Regulatory Mechanisms Of Inositol Biosynthesis In Saccharomyces Cerevisiae And Mammalian Cells, And Implications For The Mechanism Underlying Vpa-Induced Glucose 6-Phosphate Depletion, Wenxi Yu

Wayne State University Dissertations

Myo-inositol is the precursor of all inositol containing molecules, including inositol phosphates, phosphoinositides and glycosylphosphatidylinositols, which are signaling molecules involved in many critical cellular functions. Perturbation of inositol metabolism has been linked to neurological disorders. Although several widely-used anticonvulsants and mood-stabilizing drugs have been shown to exert inositol depletion effects, the mechanisms of action of the drugs and the role of inositol in these diseases are not understood. Elucidation of the molecular control of inositol synthesis will shed light on the pathologies of inositol related illnesses.

In Saccharomyces cerevisiae, deletion of the four glycogen synthase kinase-3 genes, MCK1, MRK1, MDS1, …


An Analysis Of Plasticity In The Rat Respiratory System Following Cervical Spinal Cord Injury And The Application Of Nanotechnology To Induce Or Enhance Recovery Of Diaphragm Function, Janelle Lorien Walker Jan 2016

An Analysis Of Plasticity In The Rat Respiratory System Following Cervical Spinal Cord Injury And The Application Of Nanotechnology To Induce Or Enhance Recovery Of Diaphragm Function, Janelle Lorien Walker

Wayne State University Dissertations

Second cervical segment spinal cord hemisection (C2Hx) results in ipsilateral hemidiaphragm paralysis. However, the intact latent crossed phrenic pathway can restore function spontaneously over time or immediately following drug administration.

WGA bound fluorochromes were administered to identify nuclei associated with diaphragm function in both the acute and chronic C2Hx models. WGA is unique in that it undergoes receptor mediated endocytosis and is transsynaptically transported across select physiologically active synapses. Comparison of labeling in the acutely injured to the chronically injured rat provided an anatomical map of spinal and supraspinal injury induced synaptic plasticity. The plasticity occurs over time in the …


The Role Of Oxidative Stress In The Establishment Of Resistance To Cisplatin In Epithelial Ovarian Cancer Cells, Jimmy Belotte Jan 2016

The Role Of Oxidative Stress In The Establishment Of Resistance To Cisplatin In Epithelial Ovarian Cancer Cells, Jimmy Belotte

Wayne State University Dissertations

Epithelial ovarian cancer is the deadliest of all gynecologic cancers with an estimated 22,280 new cases and 14,240 deaths expected in 2016 in the US alone. This high mortality rate can be partially attributed to a lack of universal screening and the development of resistance to the recommended chemotherapeutics. Typically, the treatment of ovarian cancer requires both cytoreductive surgery (CRS) and platinum/taxane combination chemotherapy. Initially, 50–80% of patients with advanced disease will achieve complete clinical response. Unfortunately, most will relapse within 18 months with chemoresistant disease. Thus, understanding the mechanisms of platinum resistance is critical in order to improve the …


Effects Of Foreperiod Regularity And Muscle Size On Fractionated Reaction Time, Ronald Joseph Benedict Ii Jan 2016

Effects Of Foreperiod Regularity And Muscle Size On Fractionated Reaction Time, Ronald Joseph Benedict Ii

Wayne State University Dissertations

Fractionating reaction time (FRT) chronometrically separates central (PMT) from peripheral (MT) processing, allowing for analysis of the variables that may have a timing effect on either. The purpose of this study was to determine the effect of foreperiod regularity and muscle size on the components of FRT. Forty-four male (n = 21) and female (n = 23) healthy Wayne State University students responded to a visual stimulus in a simple reaction time task, either by alternating foreperiod by block (Exp1) or by alternating muscle size by block (Exp2). All participants completed six blocks of eight trials using their right-side, with …


Identification Of Lead-Sensitive Expression And Splicing Quantitative Trait Loci In Drosophila Melanogaster By Analysis Of Rna-Seq Data, Wen Qu Jan 2016

Identification Of Lead-Sensitive Expression And Splicing Quantitative Trait Loci In Drosophila Melanogaster By Analysis Of Rna-Seq Data, Wen Qu

Wayne State University Dissertations

Lead exposure has long been one of the most important topics in global public health since it is a potent developmental neurotoxin. Here, we conducted an expression QTL (eQTLs) analysis, which is genome-wide association analysis of genetic variants with differential gene expression, in the male heads of 79 Drosophila melanogaster recombinant inbred lines originally from eight parental strains in the presence or absence of developmental exposure to 250 µM lead acetate. The aim was to study the effects of lead exposure on gene expression and identify the lead-responsive genes. After detecting 1,536 cis-eQTLs and 952 trans-eQTLs (1000 permutation threshold at …


Neuronal Insult Either By Exposure To Lead Or By Direct Neuronal Damage Cause Genome-Wide Changes In Dna Methylation And Histone 3 Lysine 36 Trimethylation, Arko Sen Jan 2016

Neuronal Insult Either By Exposure To Lead Or By Direct Neuronal Damage Cause Genome-Wide Changes In Dna Methylation And Histone 3 Lysine 36 Trimethylation, Arko Sen

Wayne State University Dissertations

Prenatal and postnatal exposure to pervasive neuro-toxicants such as Lead (Pb) has been reported to causes extensive and diverse changes in the epigenetic profile. Among epigenetic modification, DNA methylation (5mC) is perhaps the most widely studied and has been proposed to be potential early biomarkers for Pb toxicity. Several studies have demonstrated the association between Pb-exposure and 5mC. However most of these studies are restricted to looking at a specific set of target genes or repetitive elements. Therefore, one of the main objectives of our study was to use an unbiased genome-wide approach to look at Pb-exposure associated changes in …


Structural Characterization And Therapeutic Utility Of The Proton-Coupled Folate Transporter, Michael Roy Wilson Jan 2016

Structural Characterization And Therapeutic Utility Of The Proton-Coupled Folate Transporter, Michael Roy Wilson

Wayne State University Dissertations

Folate is a B9 vitamin essential to DNA synthesis. The proton-coupled folate transporter (PCFT) is a newly discovered proton/folate symporter with an acidic pH optimum and broad expression across a variety of solid tumor types, with limited expression in normal tissues. Several antifolate molecules have been developed as cancer therapeutics, although these classical antifolates display numerous off-target effects due to transport by the ubiquitous reduced folate carrier (RFC). In this dissertation, we determine the roles of multiple PCFT structure/function domains, and develop PCFT-specific antifolates to target solid tumors. We utilize substituted cysteine accessibility methods (SCAM) to identify a novel reentrant …


Development Of An Elderly Female Torso Finite Element Model For Restraint System Research And Development Applications, Anil Kalra Kalra Jan 2016

Development Of An Elderly Female Torso Finite Element Model For Restraint System Research And Development Applications, Anil Kalra Kalra

Wayne State University Dissertations

Elderly females are found to be one of the most vulnerable segments of population during motor vehicle crashes and their population is increasing in the coming decades. Current design of restraint systems as well as other passive safety measures are designed based on anthropomorphic details of younger population. Developing another dummy representing elderly female population is a costly effort, while a finite element (FE) model of elderly female with similar anthropomorphic details and age- and gender-specific material properties can be a better alternative solution. The current research focuses on the development of a FE model of an elderly female torso, …


Systems Biology Approaches For The Analysis Of High-Throughput Biological Data, Michele Donato Jan 2016

Systems Biology Approaches For The Analysis Of High-Throughput Biological Data, Michele Donato

Wayne State University Dissertations

The identification of biological processes involved with a certain phenotype, such as a disease or drug treatment, is the goal of the majority of life sciences experiments.

Pathway analysis methods are used to interpret high-throughput biological data to identify such processes by incorporating information on biological systems to translate data into biological knowledge.

Although widely used, current methods share a number of limitations.

First, they do not take into account the individual contribution of each gene to the phenotype in analysis.

Second, most of the methods include parameters of difficult interpretation, often arbitrarily set.

Third, the results of all methods …


The Impact Of Folate Restriction On Cancer And Aging: A Mechanistic Analysis, Safa Beydoun Jan 2016

The Impact Of Folate Restriction On Cancer And Aging: A Mechanistic Analysis, Safa Beydoun

Wayne State University Dissertations

Aging is a multifactorial process associated with alterations in several physiological functions. It increases susceptibility to disease and ultimately results in mortality. Since the associated diseases of aging are highly prevalent in the geriatric population, targeting the aging process as a whole may provide a better way to delay these age related diseases, in turn delaying aging. Various interventions have been shown to delay aging and age related diseases. They impact a major nutrient sensing pathway, mTOR. mTOR signaling is altered in many cancers and its downregulation was shown to delay aging. Other interventions extend lifespan by altering the one …


An Analysis Of Virtual Place Learning/Navigation In Children And Young Adults Prenatally Exposed To Alcohol, Neil Christopher Dodge Jan 2016

An Analysis Of Virtual Place Learning/Navigation In Children And Young Adults Prenatally Exposed To Alcohol, Neil Christopher Dodge

Wayne State University Dissertations

Fetal alcohol spectrum disorder refers to the spectrum of disorders resulting from prenatal alcohol exposure and is the leading cause of preventable mental retardation. Rodent studies have found that prenatal alcohol exposure impairs performance on the Morris water maze. This task requires the rodent to use distal room cues to locate a hidden platform in a pool of opaque water. Successful performance on this task is dependent upon hippocampal function. Rodents prenatally exposed to alcohol are impaired on the Morris water maze and show damage to hippocampal neurons. A human analogue of the Morris water maze, the virtual water maze …


Evolutionary Ecotoxicology Of Salinity Tolerance In Daphnia Pulex: Interactive Effects Of Clonal Variation, Salinity Stress, And Predation, Xinwu Liu Jan 2016

Evolutionary Ecotoxicology Of Salinity Tolerance In Daphnia Pulex: Interactive Effects Of Clonal Variation, Salinity Stress, And Predation, Xinwu Liu

Wayne State University Theses

Evolutionary ecotoxicology addresses effects of toxic chemicals in an ecological context and considers the potential evolutionary responses of organisms following exposure to toxins. Despite decades of research, the effects of salinity stress in freshwater systems, partly from road salt pollution, on a keystone species, Daphnia pulex, in its interaction with predators have received very limited attention. In this study, I quantified D. pulex clonal variation in response to salinity stress and the lethal and non-lethal effects of Chaoborus (a dominant planktivore in fishless ponds). Behavioral, morphological, and life history responses of two D. pulex clones, known to differ in salinity …


Development Of A Dreissena Bioassay To Assess The Toxicity Of Contaminants Across Two Life-History Stages, Caroline Joyce Addis Jan 2016

Development Of A Dreissena Bioassay To Assess The Toxicity Of Contaminants Across Two Life-History Stages, Caroline Joyce Addis

Wayne State University Theses

Dreissenid mussels (Dreissena polymorpha and D. bugensis) have rapidly become widespread and ubiquitous in North America since their introduction into the Great Lakes in the 1980s. The resulting environmental and economic impacts of their invasion have been extensive, negatively affecting biodiversity and costing millions of dollars in control efforts and damage to power generation and water treatment facilities. Although dreissenids are often associated with negative impacts, they may present a practical tool for toxicology studies. The typically sessile behavior of the benthic adults coupled with the planktonic nature of the veligers allow for a more complete evaluation of water quality …


Effects Of Local Muscle Fatigue On Proprioception And Motor Learning, Gowtami Datla Jan 2016

Effects Of Local Muscle Fatigue On Proprioception And Motor Learning, Gowtami Datla

Wayne State University Theses

ABSTRACT

EFFECTS OF LOCAL MUSCLE FATIGUE ON PROPRIOCEPTION

AND MOTOR LEARNING

by

GOWTAMI DATLA

May 2016

Advisor: Dr. Qin Lai

Major: Kinesiology and Exercise Science

Degree: Masters of Education

Background: Muscle fatigue is an exercise induced decline in the ability of muscles to produce force or power. Recent studies showed that decline in proprioception due to fatigue lead to an increasing risk of falls and injury. However, it was unknown whether fatigue-induced proprioception decrease affects skill acquisition and memory consolidation. Purpose: The aim of the study was to investigate the effects of local muscle fatigue on perceptual motor learning in …


Regulators Of Ins-6, A Major Node Of The Insulin-Like Peptide Network For Developmental Plasticity, Lisa Li Jan 2016

Regulators Of Ins-6, A Major Node Of The Insulin-Like Peptide Network For Developmental Plasticity, Lisa Li

Wayne State University Theses

In C. elegans, an insulin-like peptide (ILP) network coordinates various physiological

processes, including developmental plasticity, to enhance survival under different environments. During stressful conditions, such as high temperatures, low food and high population density, first-stage larval worms enter an alternative developmental arrest program called dauer. When ideal environmental conditions are restored, worms exit from the dauer stage to go through reproductive adulthood. Different subsets of ILPs regulate the entry into versus the exit from the dauer state. For example, the ILP ins-6 plays a minor role in inhibiting dauer entry from the ASI sensory neurons, but a more primary role …


A Five Residue Insertion Between Codons 28 And 29 Of The Hiv-1 Protease Gene Reduces The Replicative Capacity Of The Virus, Cathy Mcleod Jan 2016

A Five Residue Insertion Between Codons 28 And 29 Of The Hiv-1 Protease Gene Reduces The Replicative Capacity Of The Virus, Cathy Mcleod

Wayne State University Theses

HIV-1 protease (PR) is a 99 amino acid protein responsible for cleavage of the viral polyprotein. We have identified a novel clinical isolate, MDR/28, which contains a five residue insertion between codons 28 and 29 of a multi-drug resistant (MDR) PR. This clinical isolate displays reduced viral replicative capacity compared to the wild-type. As opposed to drug-resistance mutations, studies on insertions remain largely underrepresented in the literature, and the consequences of such insertions are largely unknown. To understand the mechanism leading to reduced replicative capacity, three PR models were created and subjected to 40ns molecular dynamics simulations: MDR/28, wild type, …


Histological Evidence Of The Effect Of Oil Palm Phenolics In Atherogenic Diet Induced Rat Model Of Alzheimer’S Disease, Kenechukwu Monplaisir Monplaisir Jan 2016

Histological Evidence Of The Effect Of Oil Palm Phenolics In Atherogenic Diet Induced Rat Model Of Alzheimer’S Disease, Kenechukwu Monplaisir Monplaisir

Wayne State University Theses

BACKGROUND: Alzheimer’s disease (AD) is a neurodegenerative disease with the clinical presentation of memory loss and cognitive impairment. Alzheimer's disease pathology is the accumulation of beta amyloid plaques and neurofibrillary tangles.

METHOD: In this study atherogenic diet was used to induce AD in aged Brown Norway rats. The rats were assigned to the following four groups fed isocaloric diets; control group (C ),high cholesterol diet (H), high cholesterol + oil palm phenolics group (HP), high cholesterol + curcumin group (HC). The impact of oil palm phenolics (OPP) on neuronal health and its effect on amyloid deposition was evaluated using histology …