Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

PDF

University of Connecticut

Honors Scholar Theses

Series

Development

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan May 2021

The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan

Honors Scholar Theses

The granule cells are the most abundant neuronal type in the human brain. Rapid proliferation of granule cell progenitors results in dramatic expansion and folding of the cerebellar cortex during postnatal development. Mis-regulation of this proliferation process causes medulloblastoma, the most prevalent childhood brain tumor. In the developing cerebellum, granule cells are derived from Atoh1-expressing cells, which arise from the upper rhombic lip (the interface between the roof plate and neuroepithelium). In addition to granule cells, the Atoh1 lineage also gives rise to different types of neurons including cerebellar nuclei neurons. In the current study, I have investigated the …


Astroglial Boundary Formation And Epha4 Signaling In Neuroblast Migration, Nicholas B. Gallo May 2014

Astroglial Boundary Formation And Epha4 Signaling In Neuroblast Migration, Nicholas B. Gallo

Honors Scholar Theses

Adult neurogenesis, the process of generating new neurons from neural precursors, is a highly complex process that is limited to two specific areas of the brain, the dentate gyrus of the hippocampus and the subventricular zone (SVZ). Despite continued research investigating neurogenesis in these two regions, we still lack a fundamental understanding of the molecular mechanisms of neural cell division, migration, differentiation, and integration in the postnatal brain. In particular, the rostral migratory stream (RMS), which is a cellular migratory route for newly generated neuronal precursors that travel from the SVZ to the olfactory bulb, will provide a useful model …


Investigating The Diversity Of Radial Glia Fates In The Rat Neocortex, Abraham William Aron May 2010

Investigating The Diversity Of Radial Glia Fates In The Rat Neocortex, Abraham William Aron

Honors Scholar Theses

Radial Glia (RG) are a mitotically active population of cells which reside within the ventricular zone at the lateral ventricle and give rise to the pyramidal neurons and astrocytes of the neocortex. Through cellular divisions, RG produce two daughter cells, one which resides in the ventricular zone and becomes another RG while the other is an immature progenitor which migrates away from the ventricle and populates the growing cortex. RG have been found to be a heterogeneous population of cells which express different surface antigens and genetic promoters which may influence the cellular fate of their progeny. In this study …


Differentiation Of Human Embryonic Stem Cell (Hesc) Derived Pyramidal Neurons, Eagan Jacqueline May 2009

Differentiation Of Human Embryonic Stem Cell (Hesc) Derived Pyramidal Neurons, Eagan Jacqueline

Honors Scholar Theses

The mammalian cerebral neocortex is a complex six-layered structure containing multiple types of neurons. Pyramidal neurons of the neocortex are formed during development in an inside-out manner, by which deep layer (DL) neurons are generated first, and upper layer (UL) neurons are generated last. Neurons within the six-layered neocortex express unique markers for their position, showing whether they are subplate, deep layer, upper layer, or Cajal-Retzius neurons. The sequential generation of cortical layers, which exists in vivo, has been partially recapitulated in vitro by differentiation of mouse embryonic stem cells (Gaspard et al., 2008) and human embryonic stem cells (hESC) …