Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

PDF

University of Connecticut

Honors Scholar Theses

Series

Cancer

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

A Dna-Peptide Crosslink (Dpc) Increases Mutagenicity In Sos-Induced Escherichia Coli, Alessandra Bassani May 2023

A Dna-Peptide Crosslink (Dpc) Increases Mutagenicity In Sos-Induced Escherichia Coli, Alessandra Bassani

Honors Scholar Theses

Bacteria, such as Escherichia coli, have an inducible system in response to DNA damage termed the SOS response. This system is activated when the replicative DNA polymerase (Pol) III encounters a lesion, uncouples from DNA helicase, and single-stranded DNA (ssDNA) accumulates at the replication fork. In this study, we investigated DNA-peptide crosslink (DpC), a common lesion that results from cross-linking of proteins or peptides, UV irradiation, and alkylating agents. To increase survival following formation of a lesion, the SOS response can utilize homologous recombination, translesion synthesis (TLS), or excision repair. With TLS, the levels of DNA Pol II, IV, …


Identification Of Translesion Synthesis Inhibitors That Target Rev7/Rev3 Protein-Protein Interactions, Seema Patel May 2022

Identification Of Translesion Synthesis Inhibitors That Target Rev7/Rev3 Protein-Protein Interactions, Seema Patel

Honors Scholar Theses

Translesion synthesis (TLS) is a cellular mechanism utilized by cancer cells to tolerate DNA damage caused by chemotherapeutics, like cisplatin, by replicating past unrepaired lesions. This increases the rate of mutations, which leads to the emergence of drug-resistant cancer cells. Preliminary studies have shown that disrupting the protein-protein interactions (PPI) in the TLS heteroprotein complex increases cells’ sensitivity to first-line genotoxic chemotherapy, illustrating how inhibiting TLS assembly and function can significantly increase cancer cell death. These results underscore the therapeutic potential of targeting TLS PPI. Our current work in this area is focusing on inhibitors capable of disrupting the Rev7/Rev3 …


Mutagenesis Of 8-Oxoguanine Adjacent To An Abasic Site In Escherichia Coli Cells Proficient Or Deficient In Dna Polymerase Iv, Savas T. Tsikis May 2014

Mutagenesis Of 8-Oxoguanine Adjacent To An Abasic Site In Escherichia Coli Cells Proficient Or Deficient In Dna Polymerase Iv, Savas T. Tsikis

Honors Scholar Theses

It is well established that clustered DNA damages or multiply damaged sites (MDS) are the result of ionizing radiation and that they are characterized by an enhanced mutagenic potential. As a model MDS, we have evaluated the mutagenic and cytotoxic properties of the ubiquitous oxidative DNA damage 8-oxoguanine (G8-oxo) adjacent to the abasic site lesion (Z) using a single stranded M13mp7L2 vector. The recombinant DNA was used to transform wild type E. coli strains and strains deficient in the translesion DNA polymerase of the Y-family, DNA polymerase IV, in the presence or absence of SOS induction. The percent …


Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer May 2014

Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer

Honors Scholar Theses

Somatic mutations may drive tumorigenesis or lead to new, immunogenic epitopes (neoantigens). The immune system is thought to represses neoplastic growths through the recognition of neoantigens presented only by tumor cells. To study mutations as well as the immune response to mutation-generated antigens, we have created a conditional knockin mouse line with a gene encoding, 5’ to 3’, yellow fluorescent protein (YFP), ovalbumin (which is processed to the immunologically recognizable peptide, SIINFEKL), and cyan fluorescent protein (CFP), or, YFP-ovalbumin-CFP. A frame shift mutation has been created at the 5’ end of the ovalbumin gene, hence YFP should always be expressed, …