Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Heat Transfer, Combustion

PDF

The Summer Undergraduate Research Fellowship (SURF) Symposium

Molecular dynamics

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Modal Phonon Transport Across Interfaces By Non-Equilibrium Molecular Dynamics Simulation, Yang Zhong, Tianli Feng, Xiulin Ruan Aug 2017

Modal Phonon Transport Across Interfaces By Non-Equilibrium Molecular Dynamics Simulation, Yang Zhong, Tianli Feng, Xiulin Ruan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Phonons represent the quantization of lattice vibration, responsible for heat transfer in semiconductors and dielectrics. Phonon heat conduction across interfaces is crucially important for the thermal management of real-life devices such as smartphones, electric vehicles, and satellites. Although recent studies have broadly investigated spectral phonon contribution to lattice thermal conductivity, the mechanism of phonon modal transport across interfaces is still not well-understood. Previous models, including the acoustic mismatch model (AMM) and diffuse mismatch model (DMM), only consider elastic process while neglecting inelastic phonon contributions. Herein, we employ spectral Non-Equilibrium Molecular Dynamics Simulation (NEMD) to probe the temperature and heat flux …


Relative Contributions Of Inelastic Phonon Scattering And Elastic Phonon Scattering To Thermal Boundary Conductance Across Solid Interfaces, Mengxi Zhao, Zexi Lu, Xiulin Ruan Aug 2016

Relative Contributions Of Inelastic Phonon Scattering And Elastic Phonon Scattering To Thermal Boundary Conductance Across Solid Interfaces, Mengxi Zhao, Zexi Lu, Xiulin Ruan

The Summer Undergraduate Research Fellowship (SURF) Symposium

The knowledge of inelastic phonon scattering is crucial for the understanding of thermal boundary conductance across solid interfaces. Several traditional theoretical models such as the acoustic mismatch model (AMM) and the diffuse mismatch model (DMM) assume that the elastic phonon scattering drives the thermal transport across the interface. But there are experiments indicating that the inelastic phonon scattering plays an important part in the interfacial thermal energy conduction as well. We use nonequilibrium molecular dynamics (NEMD) to predict the inelastic phonon conductance across Cu/Si interface. Temperature distribution across Cu/Si interface has been obtained from the simulation results, and a temperature …