Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics

Theses/Dissertations

DNA methylation

Articles 1 - 25 of 25

Full-Text Articles in Entire DC Network

Dna Methylation-Based Epigenetic Biomarkers In Cell-Type Deconvolution And Tumor Tissue Of Origin Identification, Ze Zhang Dec 2023

Dna Methylation-Based Epigenetic Biomarkers In Cell-Type Deconvolution And Tumor Tissue Of Origin Identification, Ze Zhang

Dartmouth College Ph.D Dissertations

DNA methylation is an epigenetic modification that regulates gene expression and is essential to establishing and preserving cellular identity. Genome-wide DNA methylation arrays provide a standardized and cost-effective approach to measuring DNA methylation. When combined with a cell-type reference library, DNA methylation measures allow the assessment of underlying cell-type proportions in heterogeneous mixtures. This approach, known as DNA methylation deconvolution or methylation cytometry, offers a standardized and cost-effective method for evaluating cell-type proportions. While this approach has succeeded in discerning cell types in various human tissues like blood, brain, tumors, skin, breast, and buccal swabs, the existing methods have major …


Dna Methylation And The Response To Infection In Introduced House Sparrows, Melanie Gibson Jan 2023

Dna Methylation And The Response To Infection In Introduced House Sparrows, Melanie Gibson

Electronic Theses and Dissertations

Epigenetics is the study of molecular modification of a genome without changing its base pairs. The most studied type of epigenetic mechanism is DNA methylation, which is capable of turning a gene “on” or “off.” Epigenetic potential is the capacity to which an individual can have methylation on its genome. The more CpGs available, the greater the epigenetic potential. In invasive species, genetic variation has been observed to be paradoxical: not much of it exists on a genomic level, but epigenetically, phenotypic variation can occur. The focus on shift in gene expression in this study is on Toll-Like Receptor 4 …


Roles Of Oxidative Stress And Dna Methylation In Cigarette Smoking-Induced Accelerated Acute Myeloid Leukemia Progression, Mary Figueroa Aug 2022

Roles Of Oxidative Stress And Dna Methylation In Cigarette Smoking-Induced Accelerated Acute Myeloid Leukemia Progression, Mary Figueroa

Dissertations & Theses (Open Access)

Acute myeloid leukemia (AML) is a commonly diagnosed cancer in smokers. When current or former smokers have AML, they have worse survival compared to never smoking patients. This has been observed clinically for decades, but then it is unknown how smoking leads to worsened AML survival. Smoking causes oxidative stress and altered DNA methylation that persists for decades in peripheral blood mononuclear cells, but these changes from smoking have not been evaluated in the context of AML. We hypothesize that smoking-induced molecular changes, including altered DNA methylation associated with poor AML prognosis, promote AML. We developed a novel model to …


Liquid Biopsies For Type 2 Diabetes Mellitus: Biomarkers For Disease Risk And Diagnosis, Stephanie Chidester Apr 2022

Liquid Biopsies For Type 2 Diabetes Mellitus: Biomarkers For Disease Risk And Diagnosis, Stephanie Chidester

Dissertations

Background: Type 2 diabetes mellitus (T2DM) has reached epidemic proportions in the United States. There is a critical need for earlier and more effective screening and diagnostic tools. Innovative liquid biopsy technologies may play a key role in meeting this need. Liquid biopsies are a non-invasive, adjunctive tool for determining diagnosis, prognosis, and therapeutic response. This dissertation focuses on two potential applications of liquid biopsy technologies to T2DM: (1) epigenome-wide association studies to identify epigenetic markers of risk for T2DM, and (2) extracellular vesicle (EV)-based biomarker studies to identify and detect markers associated with T2DM development and progression. Dissertation studies: …


Identification Of A Novel Protein Interaction That Elucidates The Mechanism Of Idiopathic Recurrent Miscarriages In Women With Nlrp2 Mutations, Nayeon Son Jan 2022

Identification Of A Novel Protein Interaction That Elucidates The Mechanism Of Idiopathic Recurrent Miscarriages In Women With Nlrp2 Mutations, Nayeon Son

MSU Graduate Theses

The protein NOD-Like receptor pyrin domain containing 2 (NLRP2) is one member of a larger family of protein receptors that plays an important role in our innate immune system. In humans, the NLR family consists of 22 proteins. However, only about a half of NLRs’ functions are known, but many are pro-inflammatory, causing inflammation. NLRP2 has been identified to be a maternal effect gene regulating early embryo development in idiopathic recurrent miscarriages. In previous studies, mutations in the NLRP2 gene resulted in genetic maternal imprinting disorders due to NLRP2 regulating DNA methylation. However, the exact mechanisms involved in recurrent miscarriages …


Epigenetic Mechanisms Governing Plant Growth, Development, And Responses To Nematode Parasitism, Meredith M. Bennett May 2021

Epigenetic Mechanisms Governing Plant Growth, Development, And Responses To Nematode Parasitism, Meredith M. Bennett

Doctoral Dissertations

Epigenetic mechanisms, including histone and DNA methylation and microRNAs, play key roles in mediating transcriptional changes during plant development and stress responses. However, how these interconnected epigenetic components regulate gene expression in a spatiotemporal fashion remains partially known. Here, I generated 15 transgenic Arabidopsis GUS reporter lines for genes involved in DNA methylation and demethylation pathways. The spatiotemporal expression patterns of these genes were profiled in various plant organs during development, exogenous phytohormone response, and plant-parasitic nematode pathogenesis. The analyses revealed unique and overlapping expression patterns in roots, shoots, and reproductive organs, emphasizing the importance of a DNA methylation—demethylation equilibrium. …


Initial And Advanced Stages Of Microbiota Establishment Within The Tsetse Fly, Miguel Eduardo Medina Munoz Jan 2021

Initial And Advanced Stages Of Microbiota Establishment Within The Tsetse Fly, Miguel Eduardo Medina Munoz

Graduate Theses, Dissertations, and Problem Reports

Symbiosis is a long-term physical association between two or more species, although little is known regarding its evolutionary origins, particularly at the genetic level. Tsetse flies are the vector of African trypanosomes, causative agents of Human and Animal African Trypanosomiases. Tsetse provide an ideal model for studying initial and advanced stages of symbiosis. Tsetse have a simple digestive tract microbiota primarily consisting of two bacteria; the ancient mutualist Wigglesworthia glossinidia and the recently acquired Sodalis glossinidius. This work presents a chronological study in evolutionary terms of the history of a microbial-insect association. First, I present concepts on symbiosis and …


Developing Tools For Identifying Tissue-Specific Epigenetic Marks And Predicting Dna Hydroxy/Methylation, Yu He May 2020

Developing Tools For Identifying Tissue-Specific Epigenetic Marks And Predicting Dna Hydroxy/Methylation, Yu He

Arts & Sciences Electronic Theses and Dissertations

A single genome can derive phenotypically unique cell types through various epigenetic modifications that instruct specific gene expression patterns. Histone modifications, DNA methylation, and DNA hydroxymetylation are the most common epigenetic modifications. To understand the mechanisms how these epigenetic modifications regulate gene expression, one often needs to map these marks genome-wide through profiling methods. Firstly, for histone modifications, Roadmap Epigenomics Consortium generated The Human Reference Epigenome Map, containing thousands of genome-wide histone modification datasets that describe epigenomes of a variety of different human tissue and cell types. This map has allowed investigators to obtain a much deeper and more comprehensive …


Rapid Evolution In Agroecosystems: Transposable Elements And Epigenetics In The Colorado Potato Beetle, Kristian Brevik Jan 2020

Rapid Evolution In Agroecosystems: Transposable Elements And Epigenetics In The Colorado Potato Beetle, Kristian Brevik

Graduate College Dissertations and Theses

Within agricultural ecosystems, humans and insects enter into complex relationships. Humans consider many of these insects to be pests, and exert significant pressures upon them, such as efforts to kill them using insecticides. One of the ways insects respond to these efforts is by rapidly evolving resistance to insecticides - but how they do this is not fully understood. DNA methylation, an epigenetic mechanism, and transposable elements, which are mobile genetic elements within genomes, may each play a role in shaping the way insects rapidly evolve in response to exposure to insecticides. Understanding the role of transposable elements and DNA …


Epigenetic Regulation Of Drug Metabolizing Enzymes In Normal Aging, Mohamad M. Kronfol Jan 2020

Epigenetic Regulation Of Drug Metabolizing Enzymes In Normal Aging, Mohamad M. Kronfol

Theses and Dissertations

Geriatric populations are at a higher risk for adverse drug reactions (ADRs). This may be partly due to changes in drug metabolism in old age, but the underlying mechanisms are poorly understood. Prior research in humans and mice has shown age-associated changes to the expression of several genes involved in drug metabolism. Furthermore, studies of human blood showed that epigenetic regulation of genes encoding drug metabolizing enzymes change with age. However, it is unknown if genes in the liver are similarly affected. Therefore, we hypothesize that genes encoding drug metabolizing enzymes may show differential epigenetic regulation in the liver with …


Multigenerational Genomic And Epigenetic Effects Of Manufactured Silver Nanomaterials In Caenorhabditis Elegans, Anye Wamucho Jan 2019

Multigenerational Genomic And Epigenetic Effects Of Manufactured Silver Nanomaterials In Caenorhabditis Elegans, Anye Wamucho

Theses and Dissertations--Toxicology and Cancer Biology

There has been an increase in the incorporation of silver nanomaterials into consumer products due to their antimicrobial properties. Therefore there is potential for silver nanoparticles (Ag-NPs) to leach out into the environment during different life-cycle stages of these nanomaterial-containing products. Concern about the toxicity of Ag-NPs has led to investigations into their toxic effects on a variety of organisms mainly using acute and sub-chronic, single-generation exposures. The focus of this project was to understand the effects of long-term continuous multigenerational exposure to AgNO3 and Ag-NPs in both pristine and environmentally transformed forms, on the model organism, Caenorhabditis elegans …


Characterizing Epigenetic Regulation In The Developing Chicken Retina, Bejan Abbas Rasoul May 2018

Characterizing Epigenetic Regulation In The Developing Chicken Retina, Bejan Abbas Rasoul

Masters Theses, 2010-2019

The retina, the sensory neuronal tissue within the eye, is composed of three layers of neuronal cells connected by two synaptic layers lining the inside of the anterior portion of the eye. Multipotent retinal precursor cells are genetically homogeneous and differentiate into mature retinal neurons due to differential gene expression. Differences in gene expression have been correlated with epigenetic modifications such as DNA methylation. DNA methylation of upstream regulatory elements is associated with transcriptional silencing of gene expression. Years of research in retinal development has identified the numerous genes expressed during the main steps of retinal development, however, it is …


The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland May 2018

The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland

Dissertations & Theses (Open Access)

DNA methylation is an essential epigenetic modification in mammals, as it plays important regulatory roles in multiple biological processes, such as gene transcription, maintenance of chromosomal structure and genomic stability, genomic imprinting, retrotransposon silencing, and X-chromosome inactivation. Dysregulation of DNA methylation is associated with various human diseases. For example, cancer cells usually show global hypomethylation and regional hypermenthylation, which have been implicated in genomic instability and tumor suppressor silencing, respectively. Although great progress has been made in elucidating the biological functions of DNA methylation over the last several decades, how DNA methylation patterns and levels are regulated and dysregulated is …


Investigating The Impact Of Intragenic Dna Methylation On Gene Expression, And The Clinical Implications On Tumor Cells And Associated Stroma, Michael Mcguire May 2018

Investigating The Impact Of Intragenic Dna Methylation On Gene Expression, And The Clinical Implications On Tumor Cells And Associated Stroma, Michael Mcguire

Dissertations & Theses (Open Access)

Investigations into the function of non-promoter DNA methylation have yielded new insights into epigenetic regulation of gene expression. Previous studies have highlighted the importance of distinguishing between DNA methylation in discrete functional regions; however, integrated non-promoter DNA methylation and gene expression analyses across a wide number of tumor types and corresponding normal tissues have not been performed. Through integrated analysis of gene expression and DNA methylation profiles, we uncovered an enrichment of DNA methylation sites within the gene body and 3’UTR in which DNA methylation is strongly positively correlated with gene expression. We examined 32 tumor types and identified 57 …


The Effects Of Forest Degradation On Dna Methylation In Central African Songbirds, Andrew K. Wiegardt Jan 2018

The Effects Of Forest Degradation On Dna Methylation In Central African Songbirds, Andrew K. Wiegardt

Cal Poly Humboldt theses and projects

Environmentally-induced stress can initiate a molecular response through DNA methylation, which can alter gene expression, thereby serving as a mechanism allowing individuals to acclimate to a changing environment within their lifetime. In addition to DNA methylation, the production and release of corticosterone is a physiological mechanism by which birds can cope with acute environmental stressors. To assess how environmental stress impacted DNA methylation and corticosterone, I collected blood and feather samples from three understory avian species (Alethe castanea, Bleda notatus and Pseudalethe poliocephala), along a disturbance gradient in the lowland Guinean rainforest adjacent to the village of …


Conservation And Variation Of Dna Methylation In Lactuca Sativa And Lactuca Serriola, Trudi A. Baker Dec 2017

Conservation And Variation Of Dna Methylation In Lactuca Sativa And Lactuca Serriola, Trudi A. Baker

Graduate Doctoral Dissertations

Molecular techniques for guiding plant breeding have successfully used wild progenitors of domestic crops as sources of genetic variants conveying desirable traits. However, epigenetic variation, in particular DNA methylation, is a significant source of phenotypic variation and epigenetic effects of plant domestication are poorly understood. Described herein are the first single-base pair resolution methylomes of the highly valued crop iceberg lettuce (Lactuca sativa cv. Salinas) and its close relative, and ubiquitous weed, L. serriola. This work suggests several roles for acquisition and inheritance of methylation in the evolution of Lactuca spp. in response to stress. The Lactuca spp. have conserved …


Hippocampal Epigenetic Changes In A Mouse Model Of Fetal Alcohol Spectrum Disorders, Eric J. Chater-Diehl Apr 2017

Hippocampal Epigenetic Changes In A Mouse Model Of Fetal Alcohol Spectrum Disorders, Eric J. Chater-Diehl

Electronic Thesis and Dissertation Repository

Fetal alcohol spectrum disorders (FASD) refers to the neurological, developmental, and behavioural abnormalities arising from in utero ethanol exposure. These abnormities included attention deficit, anxiety, and learning and memory impairment persisting into adulthood. The molecular mechanisms of such persistent behavioural changes remain unknown and are an area of intense research. In this thesis, mice were exposed to ethanol during the third trimester equivalent, the peak of synaptic development. Following this exposure, genome-wide epigenetic and gene expression and changes in the hippocampus were assessed in adult (70 day old) mice.

In the first experiment, genome-wide trimethylation of histone H3 at histone …


Epigenetic Editing To Validate Findings From Methylome-Wide Association Studies Of Neuropsychiatric Disorders, Robin F. Chan Jan 2017

Epigenetic Editing To Validate Findings From Methylome-Wide Association Studies Of Neuropsychiatric Disorders, Robin F. Chan

Theses and Dissertations

DNA methylation is necessary for learning, memory consolidation and has been implicated in a number of neuropsychiatric disorders. Obtaining high quality and comprehensive data for the three common forms of methylation in brain is challenging for methylome-wide association studies (MWAS). To address this we optimized a panel of enrichment methods for screening the brain methylome. Results show that these enrichment techniques approach the coverage and fidelity of the current gold standard bisulfite based techniques. Our MBD-based method can also be used with low amounts of genomic material from limited human biomaterials. Psychiatric disorders have high prevalence and are often chronic …


A Long-Term Neuroepigenomic Profile Of Prenatal Alcohol Exposure, Benjamin I. Laufer Aug 2016

A Long-Term Neuroepigenomic Profile Of Prenatal Alcohol Exposure, Benjamin I. Laufer

Electronic Thesis and Dissertation Repository

Fetal Alcohol Spectrum Disorders (FASD) represent the largest preventable cause of cognitive deficits in the western world. The mechanism(s) of how prenatal alcohol exposure (PAE) results in FASD remain unknown. Towards this end, mouse models of PAE have successfully recreated endophenotypes that are characteristic of FASD. This doctoral thesis examines the long-term epigenomic alterations associated with PAE. I have examined both mice with PAE and human patients with FASD.

In the first set of experiments, mice with PAE and matched controls were raised to adulthood and then their whole brains were examined for alterations to gene expression, non-coding RNA (ncRNA) …


Epigenetic Characterization Of Human Retina Cells, Nicholas R. Dunham May 2016

Epigenetic Characterization Of Human Retina Cells, Nicholas R. Dunham

Senior Honors Projects, 2010-2019

DNA methylation is an epigenetic modifier that modulates gene expression in plant and vertebrate genomes. The aim of this study was to characterize the role of DNA methylation in the human retina, particularly within rod and cone photoreceptor retinal neurons. Previous studies investigating DNA methylation in murine retinal cells and retina-derived human retinoblastoma immortalized cell culture lines demonstrate an inverse relationship between DNA methylation and transcriptional activity. Here, we used gene-specific bisulfite pyrosequencing analysis to measure DNA methylation in the genomes of human ocular cells in an effort to characterize the role of this important epigenetic modifier. These results can …


Neuronal Insult Either By Exposure To Lead Or By Direct Neuronal Damage Cause Genome-Wide Changes In Dna Methylation And Histone 3 Lysine 36 Trimethylation, Arko Sen Jan 2016

Neuronal Insult Either By Exposure To Lead Or By Direct Neuronal Damage Cause Genome-Wide Changes In Dna Methylation And Histone 3 Lysine 36 Trimethylation, Arko Sen

Wayne State University Dissertations

Prenatal and postnatal exposure to pervasive neuro-toxicants such as Lead (Pb) has been reported to causes extensive and diverse changes in the epigenetic profile. Among epigenetic modification, DNA methylation (5mC) is perhaps the most widely studied and has been proposed to be potential early biomarkers for Pb toxicity. Several studies have demonstrated the association between Pb-exposure and 5mC. However most of these studies are restricted to looking at a specific set of target genes or repetitive elements. Therefore, one of the main objectives of our study was to use an unbiased genome-wide approach to look at Pb-exposure associated changes in …


Population Genetics And Epigenetics Of Two Salt Marsh Plant Species Along An Environmental Gradient, Christy M. Foust Nov 2015

Population Genetics And Epigenetics Of Two Salt Marsh Plant Species Along An Environmental Gradient, Christy M. Foust

USF Tampa Graduate Theses and Dissertations

Phenotypic plasticity is the ability of a given genotype to exhibit different phenotypes in response to environmental variables, which can impact population level processes. Plasticity of ecologically-relevant traits is important to an organism’s environmental response; however, the underlying mechanisms of plasticity are largely unknown. Ecological epigenetics may offer mechanisms (e.g. DNA methylation) underlying phenotypic plasticity. Epigenetics can be defined as the underlying molecular mechanisms that allow one genotype to exhibit different phenotypes. Differential DNA methylation is one epigenetic mechanism that has been correlated with a number of ecologically-relevant traits; including, differential herbivory in Viola cazorlensis, spinescence in Ilex aquifolium …


On The Origin Of Phenotypic Variation: Novel Technologies To Dissect Molecular Determinants Of Phenotype, Francesco Vallania Dec 2013

On The Origin Of Phenotypic Variation: Novel Technologies To Dissect Molecular Determinants Of Phenotype, Francesco Vallania

All Theses and Dissertations (ETDs)

This thesis describes the conception, design, and development of novel computational tools, theoretical models, and experimental techniques applied to the dissection of molecular factors underlying phenotypic variation. The first part of my work is focused on finding rare genetic variants in pooled DNA samples, leading to the development of a novel set of algorithms, SNPseeker and SPLINTER, applied to next-generation sequencing data. The second part of my work describes the creation of a reporter system for DNA methylation for the purpose of dissecting the genetic contribution of tissue-specific patterns of DNA methylation across the genome. Finally the last part of …


Cellular Adaptation Of Macrophages To Anthrax Lethal Toxin-Induced Pyroptosis Via Epigenetic Mechanisms, Chae Young Han Apr 2013

Cellular Adaptation Of Macrophages To Anthrax Lethal Toxin-Induced Pyroptosis Via Epigenetic Mechanisms, Chae Young Han

Electronic Thesis and Dissertation Repository

Cellular adaptation to microbial stresses has been demonstrated in several cell types. Macrophages (MФ) are sentinel immune cells fending off invading microbes. Anthrax lethal toxin (LeTx) is a key virulence factor released by Bacillus anthracis that causes rapid cell death, pyroptosis. A small number of RAW246.7 macrophages (~4%) exposed to a non-lethal dose of LeTx become resistant to LeTx-induced pyroptosis for ~ 4 weeks, termed “toxin-induced resistance (TIR)”. Here, I showed that high levels of DNA methyl transferase1 (DNMT1) expression were maintained although global genomic methylation levels were not high in TIR. TIR cells treated with the DNMT inhibitor 5-azacitidine …


Tet1: A Unique Dna Demethylase For Maintenance Of Dna Methylation Pattern, Chunlei Jin Dec 2012

Tet1: A Unique Dna Demethylase For Maintenance Of Dna Methylation Pattern, Chunlei Jin

Dissertations & Theses (Open Access)

DNA methylation at the C5 position of cytosine (5-methylcytosine, 5mC) is a crucial epigenetic modification of the genome and has been implicated in numerous cellular processes in mammals, including embryonic development, transcription, X chromosome inactivation, genomic imprinting and chromatin structure. Like histone modifications, DNA methylation is also dynamic and reversible. However, in contrast to well defined DNA methyltransferases, the enzymes responsible for erasing DNA methylation still remain to be studied. The ten-eleven translocation family proteins (TET1/2/3) were recently identified as Fe(II)/2-oxoglutarate (2OG)-dependent 5mC dioxygenases, which consecutively convert 5mC into 5-hydroxymethylcytosine (5hmC), 5-formylcytosine and 5-carboxylcytosine both in vitro and in mammalian …