Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Entire DC Network

Glycolic Acid Utilization In Two Species Of Marine Bacteria, Erik S. Timsak Aug 2019

Glycolic Acid Utilization In Two Species Of Marine Bacteria, Erik S. Timsak

STAR Program Research Presentations

Interactions between bacteria and phytoplankton are crucial for the cycling of organic matter in marine environments. Around 50% of organic carbon taken up by marine bacteria is converted into inorganic carbon. The uptake of organic carbon by marine bacteria exuded from phytoplankton is a key factor in regulating the marine carbon cycle. One such molecule that is exuded by phytoplankton and then uptaken by marine bacteria is called glycolate - the anion of glycolic acid, a two caron molecule. Glycolate is exuded by phytoplankton during photorespiration and 10-50% of dissolved organic carbon in marine environments is comprised of glycolate. Additionally, …


Deletion Mutant Library For Investigation Of Functional Outputs Of Cyclic Diguanylate Metabolism In Pseudomonas Aeruginosa Pa14, Dae-Gon Ha, Megan E. Richman, George A. O'Toole Mar 2014

Deletion Mutant Library For Investigation Of Functional Outputs Of Cyclic Diguanylate Metabolism In Pseudomonas Aeruginosa Pa14, Dae-Gon Ha, Megan E. Richman, George A. O'Toole

Dartmouth Scholarship

We constructed a library of in-frame deletion mutants targeting each gene in Pseudomonas aeruginosa PA14 predicted to participate in cyclic di-GMP (c-di-GMP) metabolism (biosynthesis or degradation) to provide a toolkit to assist investigators studying c-di-GMP-mediated regulation by this microbe. We present phenotypic assessments of each mutant, including biofilm formation, exopolysaccharide (EPS) production, swimming motility, swarming motility, and twitch motility, as a means to initially characterize these mutants and to demonstrate the potential utility of this library.


Gene And Protein Sequence Optimization For High-Level Production Of Fully Active And Aglycosylated Lysostaphin In Pichia Pastoris, Hongliang Zhao, Kristina Blazanovic, Yoonjoo Choi, Chris Bailey-Kellogg, Karl E. Griswold Feb 2014

Gene And Protein Sequence Optimization For High-Level Production Of Fully Active And Aglycosylated Lysostaphin In Pichia Pastoris, Hongliang Zhao, Kristina Blazanovic, Yoonjoo Choi, Chris Bailey-Kellogg, Karl E. Griswold

Dartmouth Scholarship

Lysostaphin represents a promising therapeutic agent for the treatment of staphylococcal infections, in particular those of methicillin-resistant Staphylococcus aureus (MRSA). However, conventional expression systems for the enzyme suffer from various limitations, and there remains a need for an efficient and cost-effective production process to facilitate clinical translation and the development of nonmedical applications. While Pichia pastoris is widely used for high-level production of recombinant proteins, there are two major barriers to the production of lysostaphin in this industrially relevant host: lack of expression from the wild-type lysostaphin gene and aberrant glycosylation of the wild-type protein sequence. The first barrier can …


Form And Function Of Clostridium Thermocellum Biofilms, Alexandru Dumitrache, Gideon Wolfaardt, Grant Allen, Steven N. Liss, Lee R. Lynd Oct 2012

Form And Function Of Clostridium Thermocellum Biofilms, Alexandru Dumitrache, Gideon Wolfaardt, Grant Allen, Steven N. Liss, Lee R. Lynd

Dartmouth Scholarship

The importance of bacterial adherence has been acknowledged in microbial lignocellulose conversion studies; however, few reports have described the function and structure of biofilms supported by cellulosic substrates. We investigated the organization, dynamic formation, and carbon flow associated with biofilms of the obligately anaerobic cellulolytic bacterium Clostridium thermocellum 27405. Using noninvasive, in situ fluorescence imaging, we showed biofilms capable of near complete substrate conversion with a characteristic monolayered cell structure without an extracellular polymeric matrix typically seen in biofilms. Cell division at the interface and terminal endospores appeared throughout all stages of biofilm growth. Using continuous-flow reactors with a rate …


High Ethanol Titers From Cellulose By Using Metabolically Engineered Thermophilic, Anaerobic Microbes, D. Aaron Argyros, Shital A. Tripathi, Trisha F. Barrett, Stephen R. Rogers, Lawrence F. Feinberg, Daniel G. Olson, Justin M. Foden, Bethany B. Miller, Lee R. Lynd, David A. Hogsett, Nicky C. Caiazza Sep 2011

High Ethanol Titers From Cellulose By Using Metabolically Engineered Thermophilic, Anaerobic Microbes, D. Aaron Argyros, Shital A. Tripathi, Trisha F. Barrett, Stephen R. Rogers, Lawrence F. Feinberg, Daniel G. Olson, Justin M. Foden, Bethany B. Miller, Lee R. Lynd, David A. Hogsett, Nicky C. Caiazza

Dartmouth Scholarship

This work describes novel genetic tools for use in Clostridium thermocellum that allow creation of unmarked mutations while using a replicating plasmid. The strategy employed counter-selections developed from the native C. thermocellum hpt gene and the Thermoanaerobacterium saccharolyticum tdk gene and was used to delete the genes for both lactate dehydrogenase (Ldh) and phosphotransacetylase (Pta). The Δldh Δpta mutant was evolved for 2,000 h, resulting in a stable strain with 40:1 ethanol selectivity and a 4.2-fold increase in ethanol yield over the wild-type strain. Ethanol production from cellulose was investigated with an engineered coculture of organic acid-deficient engineered strains of …


Ecology And Genetic Structure Of A Northern Temperate Vibrio Cholerae Population Related To Toxigenic Isolates, Brian M. Schuster, Anna L. Tyzik, Rachel A. Donner, Megan J. Striplin, Salvador Almagro-Moreno Sep 2011

Ecology And Genetic Structure Of A Northern Temperate Vibrio Cholerae Population Related To Toxigenic Isolates, Brian M. Schuster, Anna L. Tyzik, Rachel A. Donner, Megan J. Striplin, Salvador Almagro-Moreno

Dartmouth Scholarship

Although Vibrio cholerae is an important human pathogen, little is known about its populations in regions where the organism is endemic but where cholera disease is rare. A total of 31 independent isolates confirmed as V. cholerae were collected from water, sediment, and oysters in 2008 and 2009 from the Great Bay Estuary (GBE) in New Hampshire, a location where the organism has never been detected. Environmental analyses suggested that abundance correlates most strongly with rainfall events, as determined from data averaged over several days prior to collection. Phenotyping, genotyping, and multilocus sequence analysis (MLSA) revealed a highly diverse endemic …


Cellulose- And Xylan-Degrading Thermophilic Anaerobic Bacteria From Biocompost, M. V. Sizova, J. A. Izquierdo, N. S. Panikov, L. R. Lynd Feb 2011

Cellulose- And Xylan-Degrading Thermophilic Anaerobic Bacteria From Biocompost, M. V. Sizova, J. A. Izquierdo, N. S. Panikov, L. R. Lynd

Dartmouth Scholarship

Nine thermophilic cellulolytic clostridial isolates and four other noncellulolytic bacterial isolates were isolated from self-heated biocompost via preliminary enrichment culture on microcrystalline cellulose. All cellulolytic isolates grew vigorously on cellulose, with the formation of either ethanol and acetate or acetate and formate as principal fermentation products as well as lactate and glycerol as minor products. In addition, two out of nine cellulolytic strains were able to utilize xylan and pretreated wood with roughly the same efficiency as for cellulose. The major products of xylan fermentation were acetate and formate, with minor contributions of lactate and ethanol. Phylogenetic analyses of 16S …


Saccharomyces Cerevisiae-Based Molecular Tool Kit For Manipulation Of Genes From Gram-Negative Bacteria, Robert M. Q. Shanks, Nicky C. Caiazza, Shannon M. Hinsa, Christine M. Toutain, George A. O'Toole Jul 2006

Saccharomyces Cerevisiae-Based Molecular Tool Kit For Manipulation Of Genes From Gram-Negative Bacteria, Robert M. Q. Shanks, Nicky C. Caiazza, Shannon M. Hinsa, Christine M. Toutain, George A. O'Toole

Dartmouth Scholarship

A tool kit of vectors was designed to manipulate and express genes from a wide range of gram-negative species by using in vivo recombination. Saccharomyces cerevisiae can use its native recombination proteins to combine several amplicons in a single transformation step with high efficiency. We show that this technology is particularly useful for vector design. Shuttle, suicide, and expression vectors useful in a diverse group of bacteria are described and utilized. This report describes the use of these vectors to mutate clpX and clpP of the opportunistic pathogen Pseudomonas aeruginosa and to explore their roles in biofilm formation and surface …


Cellulose Utilization By Clostridium Thermocellum: Bioenergetics And Hydrolysis Product Assimilation, Yi-Heng P. Zhang, Lee R. Lynd May 2005

Cellulose Utilization By Clostridium Thermocellum: Bioenergetics And Hydrolysis Product Assimilation, Yi-Heng P. Zhang, Lee R. Lynd

Dartmouth Scholarship

The bioenergetics of cellulose utilization by Clostridium thermocellum was investigated. Cell yield and maintenance parameters, Y(X/ATP)True = 16.44 g cell/mol ATP and m = 3.27 mmol ATP/g cell per hour, were obtained from cellobiose-grown chemostats, and it was shown that one ATP is required per glucan transported. Experimentally determined values for G(ATP)P-T (ATP from phosphorolytic beta-glucan cleavage minus ATP for substrate transport, mol ATP/mol hexose) from chemostats fed beta-glucans with degree of polymerization (DP) 2-6 agreed well with the predicted value of (n-2)/n [corrected] (n = mean cellodextrin DP assimilated). A mean G(ATP)(P-T) value of 0.52 +/- 0.06 was calculated …