Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Entire DC Network

Predator-By-Environment Interactions Mediate Bacterial Competition In The Dictyostelium Discoideum Microbiome, R Fredrik Inglis, Odion Asikhia, Erica Ryu, David C. Queller, Joan E. Strassmann Apr 2018

Predator-By-Environment Interactions Mediate Bacterial Competition In The Dictyostelium Discoideum Microbiome, R Fredrik Inglis, Odion Asikhia, Erica Ryu, David C. Queller, Joan E. Strassmann

Biology Faculty Publications & Presentations

Interactions between species and their environment play a key role in the evolution of diverse communities, and numerous studies have emphasized that interactions among microbes and among trophic levels play an important role in maintaining microbial diversity and ecosystem functioning. In this study, we investigate how two of these types of interactions, public goods cooperation through the production of iron scavenging siderophores and predation by the social amoeba Dictyostelium discoideum, mediate competition between two strains of Pseudomonas fluorescens that were co-isolated from D. discoideum. We find that although we are able to generally predict the competitive outcomes between …


Anaerobic Oxidation Of Ethane, Propane, And Butane By Marine Microbes: A Mini Review, Rajesh Singh, Michael S. Guzman, Arpita Bose Oct 2017

Anaerobic Oxidation Of Ethane, Propane, And Butane By Marine Microbes: A Mini Review, Rajesh Singh, Michael S. Guzman, Arpita Bose

Biology Faculty Publications & Presentations

The deep ocean and its sediments are a continuous source of non-methane short-chain alkanes (SCAs) including ethane, propane, and butane. Their high global warming potential, and contribution to local carbon and sulfur budgets has drawn significant scientific attention. Importantly, microbes can use gaseous alkanes and oxidize them to CO2, thus acting as effective biofilters. A relative decrease of these gases with a concomitant 13C enrichment of propane and n-butane in interstitial waters vs. the source suggests microbial anaerobic oxidation. The reported uncoupling of sulfate-reduction (SR) from anaerobic methane oxidation supports their microbial consumption. To date, strain …


Ancient Bacteria–Amoeba Relationships And Pathogenic Animal Bacteria, Joan E. Strassmann, Longfei Shu May 2017

Ancient Bacteria–Amoeba Relationships And Pathogenic Animal Bacteria, Joan E. Strassmann, Longfei Shu

Biology Faculty Publications & Presentations

Long before bacteria infected humans, they infected amoebas, which remain a potentially important reservoir for human disease. Diverse soil amoebas including Dictyostelium and Acanthamoeba can host intracellular bacteria. Though the internal environment of free-living amoebas is similar in many ways to that of mammalian macrophages, they differ in a number of important ways, including temperature. A new study in PLOS Biology by Taylor-Mulneix et al. demonstrates that Bordetella bronchiseptica has two different gene suites that are activated depending on whether the bacterium finds itself in a hot mammalian or cool amoeba host environment. This study specifically shows that B. …


Genomic Signatures Of Cooperation And Conflict In The Social Amoeba, Elizabeth A. Ostrowski, Yufeng Shen, Xiangjun Tian, Richard Sucgang, Huaiyang Jiang, Jiaxin Qu, Mariko Katoh-Kurasawa, Debra A. Brock, Christopher Dinh, Fremiet Lara-Garduno, Sandra L. Lee, Christie L. Kovar, Huyen H. Dinh, Viktoriya Korchina, Laronda Jackson, Shobha Patil, Yi Han, Lesley Chaboub, Gad Shaulsky, Donna M. Muzny, Kim C. Worley, Richard A. Gibbs, Stephen Richards, Adam Kuspa, Joan E. Strassmann, David C. Queller Jun 2015

Genomic Signatures Of Cooperation And Conflict In The Social Amoeba, Elizabeth A. Ostrowski, Yufeng Shen, Xiangjun Tian, Richard Sucgang, Huaiyang Jiang, Jiaxin Qu, Mariko Katoh-Kurasawa, Debra A. Brock, Christopher Dinh, Fremiet Lara-Garduno, Sandra L. Lee, Christie L. Kovar, Huyen H. Dinh, Viktoriya Korchina, Laronda Jackson, Shobha Patil, Yi Han, Lesley Chaboub, Gad Shaulsky, Donna M. Muzny, Kim C. Worley, Richard A. Gibbs, Stephen Richards, Adam Kuspa, Joan E. Strassmann, David C. Queller

Biology Faculty Publications & Presentations

    • Molecular evolution analyses reveal the history of social conflict
    • Genes that mediate social conflict show signatures of frequency-dependent selection
    • Balanced polymorphisms suggest that cheating may be stable and endemic

Cooperative systems are susceptible to invasion by selfish individuals that profit from receiving the social benefits but fail to contribute. These so-called "cheaters" can have a fitness advantage in the laboratory, but it is unclear whether cheating provides an important selective advantage in nature. We used a population genomic approach to examine the history of genes involved in cheating behaviors in the social amoeba Dictyostelium discoideum, testing whether these genes experience …


Is There Specificity In A Defensive Mutualism Against Soil Versus Lab Nematodes, Dictyostelium Discoideum Farmers And Their Bacteria?, Boahemaa Adu-Oppong,, David C. Queller, Joan E. Strassmann Apr 2015

Is There Specificity In A Defensive Mutualism Against Soil Versus Lab Nematodes, Dictyostelium Discoideum Farmers And Their Bacteria?, Boahemaa Adu-Oppong,, David C. Queller, Joan E. Strassmann

Biology Faculty Publications & Presentations

Background: The social amoeba Dictyostelium discoideum is a soil-dwelling microbe, which lives most of its life cycle in the vegetative stage as a predator of bacteria and as prey for nematodes. When bacteria are sparse, amoebae aggregate into a multicellular fruiting body. Some clones of D. discoideum have agriculture (Brock et al., 2011). They carry bacteria through the social stage, eat them prudently, and use some bacteria as defence against non-farming D. discoideum competitors. Caenorhabditis elegans preys on D. discoideum in the laboratory but does not encounter it in nature because C. elegans lives on rotten fruit. The nematode …


Concurrent Coevolution Of Intra-Organismal Cheaters And Resisters, S R. Levin, D A. Brock, David C. Queller, Joan E. Strassmann Apr 2015

Concurrent Coevolution Of Intra-Organismal Cheaters And Resisters, S R. Levin, D A. Brock, David C. Queller, Joan E. Strassmann

Biology Faculty Publications & Presentations

The evolution of multicellularity is a major transition that is not yet fully understood. Specifically, we do not know whether there are any mechanisms by which multicellularity can be maintained without a single-cell bottleneck or other relatedness-enhancing mechanisms. Under low relatedness, cheaters can evolve that benefit from the altruistic behaviour of others without themselves sacrificing. If these are obligate cheaters, incapable of cooperating, their spread can lead to the demise of multicellularity. One possibility, however, is that cooperators can evolve resistance to cheaters. We tested this idea in a facultatively multicellular social amoeba, Dictyostelium discoideum. This amoeba usually exists as …


In The Social Amoeba, Dictyostelium Discoideum , Density, Not Farming Status, Determines Predatory Success On Unpalatable Escherichia Coli, Susanne Disalvo, Debra A. Brock, Jeff Smith, David C. Queller, Joan E. Strassmann Dec 2014

In The Social Amoeba, Dictyostelium Discoideum , Density, Not Farming Status, Determines Predatory Success On Unpalatable Escherichia Coli, Susanne Disalvo, Debra A. Brock, Jeff Smith, David C. Queller, Joan E. Strassmann

Biology Faculty Publications & Presentations

Background
The social amoeba Dictyostelium discoideum interacts with bacteria in a variety of ways. It is a predator of bacteria, can be infected or harmed by bacteria, and can form symbiotic associations with bacteria. Some clones of D. discoideum function as primitive farmers because they carry bacteria through the normally sterile D. discoideum social stage, then release them after dispersal so the bacteria can proliferate and be harvested. Some farmer-associated bacteria produce small molecules that promote host farmer growth but inhibit the growth of non-farmer competitors. To test whether the farmers’ tolerance is specific or extends to other growth inhibitory …


Fruiting Bodies Of The Social Amoeba Dictyostelium Discoideum Increase Spore Transport By Drosophila, Jeff Smith, David C. Queller, Joan E. Strassmann May 2014

Fruiting Bodies Of The Social Amoeba Dictyostelium Discoideum Increase Spore Transport By Drosophila, Jeff Smith, David C. Queller, Joan E. Strassmann

Biology Faculty Publications & Presentations

Background: Many microbial phenotypes are the product of cooperative interactions among cells, but their putative fitness benefits are often not well understood. In the cellular slime mold Dictyostelium discoideum , unicellular amoebae aggregate when starved and form multicellular fruiting bodies in which stress-resistant spores are held aloft by dead stalk cells. Fruiting bodies are thought to be adaptations for dispersing spores to new feeding sites, but this has not been directly tested. Here we experimentally test whether fruiting bodies increase the rate at which spores are acquired by passing invertebrates.
Results: Drosophila melanogaster accumulate spores on their surfaces more quickly …