Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Large Length Scale Capillary Fluidics: From Jumping Bubbles To Drinking In Space, Andrew Paul Wollman Jun 2016

Large Length Scale Capillary Fluidics: From Jumping Bubbles To Drinking In Space, Andrew Paul Wollman

Dissertations and Theses

In orbit, finding the "bottom" of your coffee cup is a non-trivial task. Subtle forces often masked by gravity influence the containment and transport of fluids aboard spacecraft, often in surprising non-intuitive ways. Terrestrial experience with capillary forces is typically relegated to the micro-scale, but engineering community exposure to large length scale capillary fluidics critical to spacecraft fluid management design is low indeed. Low-cost drop towers and fast-to-flight International Space Station (ISS) experiments are increasing designer exposure to this fresh field of study. This work first provides a wide variety of drop tower tests that demonstrate fundamental and applied capillary …


Modeling Fluid Interactions With Granular And Fibrous Surfaces, Mana Mokhtabad Amrei Jan 2016

Modeling Fluid Interactions With Granular And Fibrous Surfaces, Mana Mokhtabad Amrei

Theses and Dissertations

Understanding the interactions between a body of liquid and a curvy surface is important for many applications such as underwater drag force reduction, droplet filtration, self-cleaning, and fog harvesting, among many others. This study investigates ways to predict the performance of granular and fibrous surfaces for some of the above applications. More specifically, our study is focused on 1) modeling the mechanical stability of the air-water interface over submerged superhydrophobic (SHP) surfaces and their expected drag reduction benefits, and 2) predicting the mechanical stability of a droplet on a fiber in the presence of an external body force. For the …