Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Entire DC Network

Development Of A Flexible Fpga-Based Platform For Flight Control System Research, Robert Demott Dec 2010

Development Of A Flexible Fpga-Based Platform For Flight Control System Research, Robert Demott

Theses and Dissertations

This work is part of ongoing research conducted at Virginia Commonwealth University relating to unmanned aerial vehicles. The primary objective of this thesis was to develop a flexible, high-performance autopilot platform in order to facilitate research on advanced flight control algorithms. A dual FPGA-based system architecture utilizing a stacked, multi-board design was created to meet this goal. Processing tasks were split between the two FPGA devices, allowing for improved system timing and increased throughput. A combination of analog and digital filtering techniques were employed in the new system, resulting in enhanced sensor accuracy and precision compared to the previous generation …


An Onboard Vision System For Unmanned Aerial Vehicle Guidance, Barrett Bruce Edwards Nov 2010

An Onboard Vision System For Unmanned Aerial Vehicle Guidance, Barrett Bruce Edwards

Theses and Dissertations

The viability of small Unmanned Aerial Vehicles (UAVs) as a stable platform for specific application use has been significantly advanced in recent years. Initial focus of lightweight UAV development was to create a craft capable of stable and controllable flight. This is largely a solved problem. Currently, the field has progressed to the point that unmanned aircraft can be carried in a backpack, launched by hand, weigh only a few pounds and be capable of navigating through unrestricted airspace. The most basic use of a UAV is to visually observe the environment and use that information to influence decision making. …


Search Pattern Generation And Path Management For Search Over Rough Terrain With A Small Uav, Jacob L. Bishop Oct 2010

Search Pattern Generation And Path Management For Search Over Rough Terrain With A Small Uav, Jacob L. Bishop

Theses and Dissertations

Search operations can be described by the interaction between three entities: the target, the sensor, and the environment. Past treatments of the search problem have focused primarily on the interaction between the sensor and the target. The effects that the environment has on the target and sensor have been greatly simplified or ignored completely. The wilderness search and rescue scenario is one case in which these interactions cannot be safely ignored. Using the wilderness search and rescue problem as our motivating example, we develop an algorithm for planning search paths for a small unmanned aerial vehicle (UAV) over rough terrain …


Development Of A Small And Inexpensive Terrain Avoidance System For An Unmanned Aerial Vehicle Via Potential Function Guidance Algorithm, Shane Alan Wallace Sep 2010

Development Of A Small And Inexpensive Terrain Avoidance System For An Unmanned Aerial Vehicle Via Potential Function Guidance Algorithm, Shane Alan Wallace

Master's Theses

Despite the first unmanned aerial vehicle (UAV) mission being flown on Aug 22 1849 to bomb Venice UAVs have only recently began to modernize into sophisticated tools beyond simple aerial vehicles. With an increasing number of potential applications, such as cargo delivery, communications, search and rescue, law enforcement, and homeland security, the need for appropriate UAV technology advancement also arose. Here, the development of a low-cost collision avoidance system is described. Hardware was tested and selected based on predetermined constraints and goals. Additionally, a variety of potential functions were explored and assessed at their effectiveness in preventing a collision of …


Development Of A Low Cost Autopilot System For Unmanned Aerial Vehicles, Jose Ortiz Aug 2010

Development Of A Low Cost Autopilot System For Unmanned Aerial Vehicles, Jose Ortiz

Theses and Dissertations

The purpose of this thesis was to develop a low cost autonomous flight control system for small unmanned aerial vehicles with the aim to support collaborative systems. A low cost hardware solution was achieved by careful selection of sensors, integration of hardware subsystems, and the use of new microcontroller technologies. Flight control algorithms to guide a vehicle though waypoint based flight paths and loiter about a point were implemented using direction fields. A hardware in the loop simulator was developed to ensure proper operation of all hardware and software components prior to flight testing. The resulting flight control system achieved …


Autonomous Control Of The Cal Poly Motion Flight Simulator, Andrew M. Anderson Jun 2010

Autonomous Control Of The Cal Poly Motion Flight Simulator, Andrew M. Anderson

Aerospace Engineering

An autonomous controller for the Cal Poly Motion Flight Simulator was developed such that the simulated Van’s RV-7 flies a standard light aircraft traffic pattern without any human pilot input. First, an autopilot was developed in Simulink to control the aircraft’s altitude, airspeed, and heading independent of each other. The performance of the autopilot has been tested to perform with a response sufficient for precise navigation. A C++ s- function was written as a mission controller that followed a pre-programmed path around a known airport. The aircraft performs a standard left 45 degree entry into the traffic pattern, lands on …


Cal Poly Flight Test Platform For Instrument Development, Kyle Schaller, Ian Muceus, Aaron Ells Jun 2010

Cal Poly Flight Test Platform For Instrument Development, Kyle Schaller, Ian Muceus, Aaron Ells

Aerospace Engineering

This report summarizes a six month effort to conceptually design, develop, and build an unmanned aerial vehicle to test a boundary layer data system (BLDS) developed by Dr. Russell Westphal and his team of mechanical engineering senior design students. The project is funded by Edwards Air Force Base and the United States Air Force Research Laboratory. During the first Cal Poly quarter of project work, January 4, 2010 to March 18, 2010, the team completed a conceptual and preliminary design. During the second quarter, March 18, 2010 to June 12, 2010, the team completed the construction and initial flight test …


Uav Pirates And Silentrack Integration, Travis Dean, Hushnak Singh, Ashley Wager, Matthew (Matt) Woolridge Jun 2010

Uav Pirates And Silentrack Integration, Travis Dean, Hushnak Singh, Ashley Wager, Matthew (Matt) Woolridge

Electrical Engineering

The integration of the UAV pirating system with the SilenTrack video tracking system will allow the combined system to automatically identify and track a suspicious air vehicle visually as well as identify and decode the RF control signal. Once a threat has been identified, the system will execute an algorithm to associate each control channel with the corresponding flight control surface. Once the control channels have been decoded the user can use a hand held radio controller to maneuver the drone which is now under their command.


Modular Laser Combat System For Remotely Operated Vehicles: Bridging The Gap Between Computer Simulation And Live Fire, Thomas Edward Fulenwider Jun 2010

Modular Laser Combat System For Remotely Operated Vehicles: Bridging The Gap Between Computer Simulation And Live Fire, Thomas Edward Fulenwider

Master's Theses

In the emerging industry of small unmanned vehicles, pioneered by small businesses and research institutions, a suitable combat system test platform is needed. Computer simulations are useful, but do not provide the definitive proof of effective operation necessary for deployment of a combat system. What is needed is an affordable simulated weapons system that enables live flight testing without the used of live weaponry.

A framework is developed here for the construction of a simulated weapon using Free Space Optical (FSO) infrared communication. It is developed in such a way to ensure compatibility with a variety of platforms including ground …


Cooperative Remote Sensing And Actuation Using Networked Unmanned Vehicles, Haiyang Chao May 2010

Cooperative Remote Sensing And Actuation Using Networked Unmanned Vehicles, Haiyang Chao

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This dissertation focuses on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes in the current information-rich world. The target scenarios are environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks, etc. AggieAir, a small and low-cost unmanned aircraft system, is designed based on the remote sensing requirements from environmental monitoring missions. The state estimation problem and the advanced lateral flight controller design problem are further attacked focusing on the small unmanned aerial vehicle (UAV) platform. Then the UAV-based remote sensing problem is focused with further flight …