Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 53

Full-Text Articles in Entire DC Network

A Computational Study Of Curvature In The Outflow Graft Of A Continuous Flow Left Ventricular Assist Device, Laura Patterson Jan 2016

A Computational Study Of Curvature In The Outflow Graft Of A Continuous Flow Left Ventricular Assist Device, Laura Patterson

Theses and Dissertations

Left ventricular assist devices (LVADs) are an increasingly utilized therapy for end-stage heart failure. Thrombosis within the graft from the pump to the aorta has been documented, but is poorly researched. This study examines the effect of graft geometry, as measured by radius of curvature, bend angle, and diameter, on thrombogenic flow patterns within the graft for a range of flow conditions. It also examines the effect blood properties, including viscosity and density, on these flow patterns. The results indicated that radius of curvature had a powerful effect on thrombogenic flow patterns. Flowrate and bend angle were also influential. The …


Design & Analysis Of A Computer Experiment For An Aerospace Conformance Simulation Study, Ryan W. Gryder Jan 2016

Design & Analysis Of A Computer Experiment For An Aerospace Conformance Simulation Study, Ryan W. Gryder

Theses and Dissertations

Within NASA's Air Traffic Management Technology Demonstration # 1 (ATD-1), Interval Management (IM) is a flight deck tool that enables pilots to achieve or maintain a precise in-trail spacing behind a target aircraft. Previous research has shown that violations of aircraft spacing requirements can occur between an IM aircraft and its surrounding non-IM aircraft when it is following a target on a separate route. This research focused on the experimental design and analysis of a deterministic computer simulation which models our airspace configuration of interest. Using an original space-filling design and Gaussian process modeling, we found that aircraft delay assignments …


Electrochemical Studies Of Cerium And Uranium In Licl-Kcl Eutectic For Fundamentals Of Pyroprocessing Technology, Dalsung Yoon Jan 2016

Electrochemical Studies Of Cerium And Uranium In Licl-Kcl Eutectic For Fundamentals Of Pyroprocessing Technology, Dalsung Yoon

Theses and Dissertations

Understanding the characteristics of special nuclear materials in LiCl-KCl eutectic salt is extremely important in terms of effective system operation and material accountability for safeguarding pyroprocessing technology. By considering that uranium (U) is the most abundant and important element in the used nuclear fuel, measurements and analyses of U properties were performed in LiCl-KCl eutectic salt. Therefore, the electrochemical techniques such as cyclic voltammetry (CV), open circuit potential (OCP), Tafel, linear polarization (LP), and electrochemical impedance spectroscopy (EIS) were conducted under different experimental conditions to explore the electrochemical, thermodynamic, and kinetic properties of U in LiCl-KCl eutectic. The ultimate goal …


Modeling Fluid Interactions With Granular And Fibrous Surfaces, Mana Mokhtabad Amrei Jan 2016

Modeling Fluid Interactions With Granular And Fibrous Surfaces, Mana Mokhtabad Amrei

Theses and Dissertations

Understanding the interactions between a body of liquid and a curvy surface is important for many applications such as underwater drag force reduction, droplet filtration, self-cleaning, and fog harvesting, among many others. This study investigates ways to predict the performance of granular and fibrous surfaces for some of the above applications. More specifically, our study is focused on 1) modeling the mechanical stability of the air-water interface over submerged superhydrophobic (SHP) surfaces and their expected drag reduction benefits, and 2) predicting the mechanical stability of a droplet on a fiber in the presence of an external body force. For the …


Autonomous Navigation With Obstacle Avoidance For Unmanned Aircraft Systems Using Milp, James A. Devens Jan 2016

Autonomous Navigation With Obstacle Avoidance For Unmanned Aircraft Systems Using Milp, James A. Devens

Theses and Dissertations

Autonomous coordination among multiple aerial vehicles to ensure a collision free airspace is a critical aspect of today’s airspace. With the rise of Unmanned Aerial Vehicles (UAVs) in the military and commercial sectors, obstacle avoidance in a densely populated airspace is necessary. This thesis investigates finding optimal or near-optimal trajectories in real-time for aircraft in complex airspaces containing a large number of obstacles. The solution for the trajectories is described as a linear program subject to mixed integer constraints, known as a Mixed Integer Linear Program (MILP). The resulting MILP problem is solved in real time using a well-known, public …


Design And Development Of A High-Temperature High-Pressure Rolling Ball Viscometer/Densimeter And Evaluation Of Star Polymer-Solvent Mixtures, Matthew Stanton Newkirk Jan 2016

Design And Development Of A High-Temperature High-Pressure Rolling Ball Viscometer/Densimeter And Evaluation Of Star Polymer-Solvent Mixtures, Matthew Stanton Newkirk

Theses and Dissertations

Modern automotive applications such as transmission clutch plates, combustion chambers, diesel fuel injector tips, and axle gears and friction plates operate at temperatures that can exceed 250°C and pressures of 40,000 psia. Industrial practice is to add homopolymers and copolymers to base oils to modify bulk fluid viscosity and frictional properties for these demanding applications. However, designing polymeric additives for lubricants and predicting their performance is limited by the lack of available high-temperature high-pressure (HTHP) viscosity and density data needed to test contemporary lubricity models. Thus, a major objective of this thesis is the design, development, and commissioning of a …


Hybrid Straintronics-Spintronics: Energy-Efficient Non-Volatile Devices For Boolean And Non-Boolean Computation, Ayan K. Biswas Jan 2016

Hybrid Straintronics-Spintronics: Energy-Efficient Non-Volatile Devices For Boolean And Non-Boolean Computation, Ayan K. Biswas

Theses and Dissertations

Research in future generation computing is focused on reducing energy dissipation while maintaining the switching speed in a binary operation to continue the current trend of increasing transistor-density according to Moore’s law. Unlike charge-based CMOS technology, spin-based nanomagnetic technology, based on switching bistable magnetization of single domain shape-anisotropic nanomagnets, has the potential to achieve ultralow energy dissipation due to the fact that no charge motion is directly involved in switching. However, switching of magnetization has not been any less dissipative than switching transistors because most magnet switching schemes involve generating a current to produce a magnetic field, or spin transfer …


The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves Jan 2016

The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves

Theses and Dissertations

Ge1-xSnx alloys are among a small class of benign semiconductors with composition tunable bandgaps in the near-infrared spectrum. As the amount of Sn is increased the band energy decreases and a transition from indirect to direct band structure occurs. Hence, they are prime candidates for fabrication of Si-compatible electronic and photonic devices, field effect transistors, and novel charge storage device applications. Success has been achieved with the growth of Ge1-xSnx thin film alloys with Sn compositions up to 34%. However, the synthesis of nanocrystalline alloys has proven difficult due to larger discrepancies (~14%) in …


Electric Field Controlled Strain Induced Switching Of Magnetization Of Galfenol Nanomagnets In Magneto-Electrically Coupled Multiferroic Stack, Hasnain Ahmad Jan 2016

Electric Field Controlled Strain Induced Switching Of Magnetization Of Galfenol Nanomagnets In Magneto-Electrically Coupled Multiferroic Stack, Hasnain Ahmad

Theses and Dissertations

The ability to control the bi-stable magnetization states of shape anisotropic single domain nanomagnets has enormous potential for spawning non-volatile and energy-efficient computing and signal processing systems. One of the most energy efficient switching methods is to adopt a system of a 2-phase multiferroic nanomagnet, where a voltage applied on the piezoelectric layer generates a strain in it and the strain is elastically transferred to the magnetostrictive nanomagnet which rotates the magnetization states of the nanomagnet at room temperature via the converse magnet-electric effect. Recently, it has been demonstrated that the magnetization of a Co nanomagnet can be switched between …


Pattern Recognition In Class Imbalanced Datasets, Nahian A. Siddique Jan 2016

Pattern Recognition In Class Imbalanced Datasets, Nahian A. Siddique

Theses and Dissertations

Class imbalanced datasets constitute a significant portion of the machine learning problems of interest, where recog­nizing the ‘rare class’ is the primary objective for most applications. Traditional linear machine learning algorithms are often not effective in recognizing the rare class. In this research work, a specifically optimized feed-forward artificial neural network (ANN) is proposed and developed to train from moderate to highly imbalanced datasets.

The proposed methodology deals with the difficulty in classification task in multiple stages—by optimizing the training dataset, modifying kernel function to generate the gram matrix and optimizing the NN structure. First, the training dataset is extracted …


Improving Understandability And Uncertainty Modeling Of Data Using Fuzzy Logic Systems, Dumidu S. Wijayasekara Jan 2016

Improving Understandability And Uncertainty Modeling Of Data Using Fuzzy Logic Systems, Dumidu S. Wijayasekara

Theses and Dissertations

The need for automation, optimality and efficiency has made modern day control and monitoring systems extremely complex and data abundant. However, the complexity of the systems and the abundance of raw data has reduced the understandability and interpretability of data which results in a reduced state awareness of the system. Furthermore, different levels of uncertainty introduced by sensors and actuators make interpreting and accurately manipulating systems difficult. Classical mathematical methods lack the capability to capture human knowledge and increase understandability while modeling such uncertainty.

Fuzzy Logic has been shown to alleviate both these problems by introducing logic based on vague …


Modeling Time-Dependent Performance Of Submerged Superhydrophobic Or Slippery Surfaces, Ahmed A. Hemeda Jan 2016

Modeling Time-Dependent Performance Of Submerged Superhydrophobic Or Slippery Surfaces, Ahmed A. Hemeda

Theses and Dissertations

The goal of this study is to quantify the transient performance of microfabricated superhydrophobic surfaces when used in underwater applications. A mathematical framework is developed and used to predict the stability, longevity, and drag reduction benefits of submerged superhydrophobic surfaces with two- or three-dimensional micro-textures. In addition, a novel design is proposed to improve the drag-reduction benefits of lubricant-infused surfaces, by placing a layer of trapped air underneath the lubricant layer. The new design is referred to as lubricant–infused surfaces with trapped air, and it is designed to eliminate the long-lasting longevity problem of submerged superhydrophobic surfaces. The effectiveness of …


Filter Performance Under Simulated Real-World Conditions, Qiang Wang Jan 2016

Filter Performance Under Simulated Real-World Conditions, Qiang Wang

Theses and Dissertations

Evaluating the performance of filter media for filtration applications is essential to assure design engineers and users that filter device will deliver promised performance for specific applications under the environmental stress. The study of particle loading characteristics of filter media in the laboratory setting is typically performed under the steady flow conditions, i.e., at the constant particle concentration and flow rate. In reality, filtration products are operated under the situations that the flow rate and mass concentration of particles are varied in time. The success of translating the laboratory data to estimate the performance of filter media in the fields …


Fabricating Superhydrophobic And Superoleophobic Surfaces With Multiscale Roughness Using Airbrush And Electrospray, Karam N. Almilaji Jan 2016

Fabricating Superhydrophobic And Superoleophobic Surfaces With Multiscale Roughness Using Airbrush And Electrospray, Karam N. Almilaji

Theses and Dissertations

Examples of superhydrophobic surfaces found in nature such as self-cleaning property of lotus leaf and walking on water ability of water strider have led to an extensive investigation in this area over the past few decades. When a water droplet rests on a textured surface, it may either form a liquid-solid-vapor composite interface by which the liquid droplet partially sits on air pockets or it may wet the surface in which the water replaces the trapped air depending on the surface roughness and the surface chemistry. Super water repellent surfaces have numerous applications in our daily life such as drag …


Power Maximization For Pyroelectric, Piezoelectric, And Hybrid Energy Harvesting, Murtadha A. Shaheen Jan 2016

Power Maximization For Pyroelectric, Piezoelectric, And Hybrid Energy Harvesting, Murtadha A. Shaheen

Theses and Dissertations

The goal of this dissertation consists of improving the efficiency of energy harvesting using pyroelectric and piezoelectric materials in a system by the proper characterization of electrical parameters, widening frequency, and coupling of both effects with the appropriate parameters.

A new simple stand-alone method of characterizing the impedance of a pyroelectric cell has been demonstrated. This method utilizes a Pyroelectric single pole low pass filter technique, PSLPF. Utilizing the properties of a PSLPF, where a known input voltage is applied and capacitance Cp and resistance Rp can be calculated at a frequency of 1 mHz to 1 Hz. …


Exploration Of Erasure-Coded Storage Systems For High Performance, Reliability, And Inter-Operability, Pradeep Subedi Jan 2016

Exploration Of Erasure-Coded Storage Systems For High Performance, Reliability, And Inter-Operability, Pradeep Subedi

Theses and Dissertations

With the unprecedented growth of data and the use of low commodity drives in local disk-based storage systems and remote cloud-based servers has increased the risk of data loss and an overall increase in the user perceived system latency. To guarantee high reliability, replication has been the most popular choice for decades, because of simplicity in data management. With the high volume of data being generated every day, the storage cost of replication is very high and is no longer a viable approach.

Erasure coding is another approach of adding redundancy in storage systems, which provides high reliability at a …


Development And Characterization Of Lung Derived Extracellular Matrix Hydrogels, Robert A. Pouliot Jan 2016

Development And Characterization Of Lung Derived Extracellular Matrix Hydrogels, Robert A. Pouliot

Theses and Dissertations

Chronic obstructive pulmonary disease (COPD) including emphysema is a devastating condition, increasing in prevalence in the US and worldwide. There remains no cure for COPD, rather only symptomatic treatments. Due to unique challenges of the lung, translation of therapies for acute lung injury to target chronic lung diseases like COPD has not been successful. We have been investigating lung derived extracellular matrix (ECM) hydrogels as a novel approach for delivery of cellular therapies to the pulmonary system.

During the course of this work we have developed and characterized a lug derived ECM hydrogel that exhibits “injectability,” allowing cells or dugs …


Effects Of Antidepressants On Human Mesenchymal Stem Cell Differentiation On Clinically Relevant Titanium Surfaces, Nancy B. Ayad Jan 2016

Effects Of Antidepressants On Human Mesenchymal Stem Cell Differentiation On Clinically Relevant Titanium Surfaces, Nancy B. Ayad

Theses and Dissertations

Selective Serotonin Reuptake Inhibitors (SSRIs) are the most frequently prescribed class of drugs worldwide and are implemented in the treatment of depression and other psychiatric disorders. SSRIs relieve depressive symptoms by modulating levels of the neurotransmitter serotonin in the brain. SSRIs block the function of the serotonin transporter, thereby increasing concentrations of extracellular serotonin. However, serotonin levels in the neurons of the brain only account for 5% while the remaining 95% is present outside the brain. Serotonin receptors and transporter are located on bone resident cells (mesenchymal stem cells (MSCs)), osteoblasts and osteoclasts, and serotonergic activity is believed to affect …


The Molecular And Mechanical Mechanisms Of The Age-Associated Increase In The Severity Of Experimental Ventilator Induced Lung Injury, Joseph Ames Herbert Jan 2016

The Molecular And Mechanical Mechanisms Of The Age-Associated Increase In The Severity Of Experimental Ventilator Induced Lung Injury, Joseph Ames Herbert

Theses and Dissertations

Abstract

Background

The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and mortality. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood.

Pulmonary edema is a hallmark of VILI and the severity of edema increases with age. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress (ARDS) patients, but has not been investigated in VILI. We hypothesized that age-associated increases in pulmonary edema promote age-related increases in ventilator-associated mortality. Endoplasmic reticulum (ER) …


Surface Modification Techniques For Increased Corrosion Tolerance Of Zirconium Fuel Cladding, James Carr Jan 2016

Surface Modification Techniques For Increased Corrosion Tolerance Of Zirconium Fuel Cladding, James Carr

Theses and Dissertations

Corrosion is a major issue in applications involving materials in normal and severe environments, especially when it involves corrosive fluids, high temperatures, and radiation. Left unaddressed, corrosion can lead to catastrophic failures, resulting in economic and environmental liabilities. In nuclear applications, where metals and alloys, such as steel and zirconium, are extensively em- ployed inside and outside of the nuclear reactor, corrosion accelerated by high temperatures, neu- tron radiation, and corrosive atmospheres, corrosion becomes even more concerning. The objec- tives of this research are to study and develop surface modification techniques to protect zirconium cladding by the incorporation of a …


The Role Of E-Cadherin Force In The Maintenance Of Homeostasis In Epithelial Acini, Fnu Vani Narayanan Jan 2016

The Role Of E-Cadherin Force In The Maintenance Of Homeostasis In Epithelial Acini, Fnu Vani Narayanan

Theses and Dissertations

Numerous three-dimensional model systems have emerged for emulating the biochemical and physiological states of native tissue. Yet little is known about the effects of mechanical forces on cell behavior in the context of an organized tissue structure in three-dimensional cell-culture. Epithelial cells cultured in a three-dimensional environment comprised of extracellular matrix proteins form spheroids of polarized cells. Cellular responses to mechanical cues, generated from dynamic interactions with the extracellular matrix and neighboring cells, are known to influence cellular behavior to a great extent. Previous studies have shown that tumorigenic progression has been frequently linked to the down regulation of E-cadherin, …


High-Temperature, High-Pressure Viscosities And Densities Of Toluene, Aaron J. Rowane Jan 2016

High-Temperature, High-Pressure Viscosities And Densities Of Toluene, Aaron J. Rowane

Theses and Dissertations

High-temperature, high-pressure (HTHP) conditions are exemplified in ultra-deep petroleum reservoirs and can be exhibited within diesel engines. Accurate pure component hydrocarbon data is essential in understanding the overall behavior of petroleum and diesel fuel at these conditions. The present study focuses on the HTHP properties of toluene since this hydrocarbon is frequently used to increase the octane rating of gasoline and toluene occurs naturally in crude oil. In this thesis experimental densities and viscosity are presented to 535 K and 300 MPa extending the database of toluene viscosity data to higher temperature than previous studies. The data is correlated to …


Beyond Conventional C-Plane Gan-Based Light Emitting Diodes: A Systematic Exploration Of Leds On Semi-Polar Orientations, Morteza Monavarian Jan 2016

Beyond Conventional C-Plane Gan-Based Light Emitting Diodes: A Systematic Exploration Of Leds On Semi-Polar Orientations, Morteza Monavarian

Theses and Dissertations

Despite enormous efforts and investments, the efficiency of InGaN-based green and yellow-green light emitters remains relatively low, and that limits progress in developing full color display, laser diodes, and bright light sources for general lighting. The low efficiency of light emitting devices in the green-to-yellow spectral range, also known as the “Green Gap”, is considered a global concern in the LED industry. The polar c-plane orientation of GaN, which is the mainstay in the LED industry, suffers from polarization-induced separation of electrons and hole wavefunctions (also known as the “quantum confined Stark effect”) and low indium incorporation efficiency that …


Coherent Spin Transport In Nanowire Spin Valves And Novel Spintronic Device Possibilities, Md Iftekhar Hossain Jan 2016

Coherent Spin Transport In Nanowire Spin Valves And Novel Spintronic Device Possibilities, Md Iftekhar Hossain

Theses and Dissertations

Coherent injection, detection and manipulation of spins in semiconductor nansotructures can herald a new genre of information processing devices that are extremely energy-efficient and non-volatile. For them to work reliably, spin coherence must be maintained across the device by suppressing spin relaxation. Suppression can be accomplished by structural engineering, such as by confining spin carriers to the lowest subband in a semiconductor quantum wire. Accordingly, we have fabricated 50-nm diameter InSb nanowire spin valves capped with Co and Ni nanocontacts in which a single conduction subband is occupied by electrons at room temperature. This extreme quantum confinement has led to …


Optical Investigations Of Ingan Heterostructures And Gesn Nanocrystals For Photonic And Phononic Applications: Light Emitting Diodes And Phonon Cavities, Shopan D. Hafiz Jan 2016

Optical Investigations Of Ingan Heterostructures And Gesn Nanocrystals For Photonic And Phononic Applications: Light Emitting Diodes And Phonon Cavities, Shopan D. Hafiz

Theses and Dissertations

InGaN heterostructures are at the core of blue light emitting diodes (LEDs) which are the basic building blocks for energy efficient and environment friendly modern white light generating sources. Through quantum confinement and electronic band structure tuning on the opposite end of the spectrum, Ge1−xSnx alloys have recently attracted significant interest due to its potential role as a silicon compatible infra-red (IR) optical material for photodetectors and LEDs owing to transition to direct bandgap with increasing Sn. This thesis is dedicated to establishing an understanding of the optical processes and carrier dynamics in InGaN heterostructures for achieving …


Novel Small Airway Model Using Electrospun Decellularized Lung Extracellular Matrix, Bethany M. Young Jan 2016

Novel Small Airway Model Using Electrospun Decellularized Lung Extracellular Matrix, Bethany M. Young

Theses and Dissertations

Chronic respiratory diseases affects many people worldwide with little known about the mechanisms diving the pathology, making it difficult to find a cure. Improving the understanding of smooth muscle and extracellular matrix (ECM) interaction is key to developing a remedy to this leading cause of death. With currently no relevant or controllable in vivo or in vitro model to investigate diseased and normal interactions of small airway components, the development of a physiologically relevant in vitro model with comparable cell attachment, signaling, and organization is necessary to develop new treatments for airway disease. The goal of this study is to …


Magnetic Materials Characterization And Modeling For The Enhanced Design Of Magnetic Shielding Of Cryomodules In Particle Accelerators., Sanjay K. Sah Jan 2016

Magnetic Materials Characterization And Modeling For The Enhanced Design Of Magnetic Shielding Of Cryomodules In Particle Accelerators., Sanjay K. Sah

Theses and Dissertations

Particle accelerators produce beams of high-energy particles, which are used for both fundamental and applied scientific research and are critical to the development of accelerator driven sub-critical reactor systems. An effective magnetic shield is very important to achieve higher quality factor (Qo) of the cryomodule of a particle accelerator. The allowed value of field inside the cavity due to all external fields (particularly the Earth’s magnetic field) is ~15 mG or less. The goal of this PhD dissertation is to comprehensively study the magnetic properties of commonly used magnetic shielding materials at both cryogenic and room temperatures. This knowledge can …


Efficiency Evaluation Of A Magnetically Driven Multiple Disk Centrifugal Blood Pump, Kayla H. Moody Jan 2016

Efficiency Evaluation Of A Magnetically Driven Multiple Disk Centrifugal Blood Pump, Kayla H. Moody

Theses and Dissertations

Heart failure is expected to ail over 8 million people in America by 2030 leaving many in need of cardiac replacement. To accommodate this large volume of people, ventricular assist devices (VADs) are necessary to provide mechanical circulatory support. Current VADs exhibit issues such as thrombosis and hemolysis caused by large local pressure drops and turbulent flow within the pump. Multiple disk centrifugal pumps (MDCPs) use shearing and centrifugal forces to produce laminar flow patterns and eliminate large pressure drops within the pump which greatly reduce risks that are in current VADs. The MDCP has a shaft drive system (SDS) …


Characterization Of Fibrin Matrix Incorporated Electrospun Polycaprolactone Scaffold, Cho Yi Wong Jan 2016

Characterization Of Fibrin Matrix Incorporated Electrospun Polycaprolactone Scaffold, Cho Yi Wong

Theses and Dissertations

Specific objective: Guided tissue regeneration (GTR) aims to regenerate the lost attachment apparatus caused by periodontal disease through the use of a barrier membrane. For the GTR procedures to be successful, barrier membranes are required to be present at the surgical site for an extended period of time (weeks to months). Synthetic membranes have the advantage of prolonged presence in a wound site; however, they do not actively contribute to wound healing. Biologic membranes are recognized by the host tissue and participate in wound healing but have the disadvantage of early resorption. Therefore, the goal of this study is …


Ultra–Low Power Straintronic Nanomagnetic Computing With Saw Waves: An Experimental Study Of Saw Induced Magnetization Switching And Properties Of Magnetic Nanostructures, Vimal G. Sampath Jan 2016

Ultra–Low Power Straintronic Nanomagnetic Computing With Saw Waves: An Experimental Study Of Saw Induced Magnetization Switching And Properties Of Magnetic Nanostructures, Vimal G. Sampath

Theses and Dissertations

A recent International Technology Roadmap for Semiconductors (ITRS) report (2.0, 2015 edition) has shown that Moore’s law is unlikely to hold beyond 2028. There is a need for alternate devices to replace CMOS based devices, if further miniaturization and high energy efficiency is desired. The goal of this dissertation is to experimentally demonstrate the feasibility of nanomagnetic memory and logic devices that can be clocked with acoustic waves in an extremely energy efficient manner. While clocking nanomagnetic logic by stressing the magnetostrictive layer of a multiferroic logic element with with an electric field applied across the piezoelectric layer is known …