Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Engineering

The University of Southern Mississippi

Theses/Dissertations

Morphology

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Development And Structural Origin Of Stretchable Semiconducting Polymers And Composites, Yunfei Wang Aug 2024

Development And Structural Origin Of Stretchable Semiconducting Polymers And Composites, Yunfei Wang

Dissertations

Stretchable semiconductors are pivotal in advancing wearable and implantable electronics, with those boasting both high stretchability and self-healing capabilities being especially significant for a myriad of wearable applications. In this dissertation, we developed an extremely soft, highly stretchable, and self-healing elastomer based on H-bonding crosslinked amide-functionalized polyisobutylene (PIB-amide). When blended with a high-performance conjugated diketopyrrolopyrrole (DPP-T) polymer, the composite exhibits unprecedented stretchability, exceptionally low elastic modulus, and an innate ability to self-heal at room temperature.

The morphology of conjugated polymer/elastomer semiconducting composites have significant impacts on electrical and mechanical properties Further investigations focused on manipulating the phase separation size in …


Using Afm-Ir To Study Nanoscopic Phase Behavior Of Polymer Blends And Photovoltaic Bulk Heterojunctions, Nathaniel L. Prine Dec 2023

Using Afm-Ir To Study Nanoscopic Phase Behavior Of Polymer Blends And Photovoltaic Bulk Heterojunctions, Nathaniel L. Prine

Dissertations

Conjugated polymers (CPs) and polymer blends harbor the potential for high-performance organic solar cells (OSCs) due to their short energy payback time, low cost, solution processability, lightweight attributes, and flexibility. However, OSCs suffer from poor thermal stability compared to their inorganic equivalents. This study explores the thermal instability of OSCs, focusing on phase separation of the photoactive layer under heat, resulting in morphology changes and degradation of power conversion efficiency (PCE). Utilizing atomic-force microscopy coupled with infrared spectroscopy (AFM-IR) and differential scanning calorimetry (DSC), we delve into thermal stability-morphology relationships to devise strategies to improve OSC blend durability under thermal …


Investigation On The Morphology Of Charge-Transfer Complexes In Low Density Polyethylene, Wade Korf May 2020

Investigation On The Morphology Of Charge-Transfer Complexes In Low Density Polyethylene, Wade Korf

Master's Theses

Fillers are used ubiquitously throughout the fields of polymer and material science to overcome many inherent limitations to polymeric materials (i.e. poor stiffness or strength) and to expand their potential applications. There is a need to develop controllable particle architectures to better understand fundamental structure-property relationships in particle reinforced polymer composites. Charge-transfer complexes (CTCs) can assemble in situ into various needle and dendritic shapes via simple fabrication processes and at low loading levels. In this study, the effect of tetrathiafulvalene (TTF) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) CTC crystallites of various shapes and sizes on composite mechanical properties was investigated in an LDPE …


Morphology-Property Relationship For Binary Organic Thin Films, Alyssa Lynn Griffin Aug 2015

Morphology-Property Relationship For Binary Organic Thin Films, Alyssa Lynn Griffin

Master's Theses

Organic thin films can be readily mass-produced through solution-based fabrication methods including ink-printing and solution-casting because their light weight, flexibility, and inexpensive sources. Their applications range from organic field-effect transistors (OFET), organic solar cells (OSC), to organic light emitting diodes (OLEDs). Compared with pure component films, binary organic thin films (BOTF) allows for novel characteristics and specialized features to handle more demanding tasks. Due to the complex intermolecular interactions in BOTF, various microscopic phases with different morphological and electronic properties may be formed and this information is difficult to extract through conventional bulk measurements.

Organic thin films can be readily …


Cure Kinetics, Morphologies, And Mechanical Properties Of Thermoplastic/Mwcnt Modified Multifunctional Glassy Epoxies Prepared Via Continuous Reaction Methods, Xiaole Cheng May 2015

Cure Kinetics, Morphologies, And Mechanical Properties Of Thermoplastic/Mwcnt Modified Multifunctional Glassy Epoxies Prepared Via Continuous Reaction Methods, Xiaole Cheng

Dissertations

The primary goal of this dissertation is to develop a novel continuous reactor method to prepare partially cured epoxy prepolymers for aerospace prepreg applications with the aim of replacing traditional batch reactors. Compared to batch reactors, the continuous reactor is capable of solubilizing and dispersing a broad range of additives including thermoplastic tougheners, stabilizers, nanoparticles and curatives and advancing epoxy molecular weights and viscosities while reducing energy consumption.

In order to prove this concept, polyethersulfone (PES) modified 4, 4’-diaminodiphenylsulfone (44DDS)/tetraglycidyl-4, 4’-diaminodiphenylmethane (TGDDM) epoxy prepolymers were firstly prepared using both continuous reactor and batch reactor methods. Kinetic studies confirmed the chain …