Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Clemson University

2012

Glass

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Optimization Of Processing Parameters For As2se3 Glass For Low Loss, High Strength Fibers, Baptiste Giroire Aug 2012

Optimization Of Processing Parameters For As2se3 Glass For Low Loss, High Strength Fibers, Baptiste Giroire

All Theses

Chalcogenide glasses have been widely studied due to their extraordinary transparency in the infrared (IR) region from 0.5 to 20 μm. This transparency combined with excellent thermo-mechanical properties, makes them ideal candidate for infrared optics including IR fiber optic applications. However, such non-oxide glasses generally exhibit low mechanical strength, as compared to their oxide counterpart, which are based on covalently bonded metal-oxygen species. In addition to mechanical robustness, low optical loss (hence low impurity content) is required for most IR optical materials, including the one in this study, amorphous arsenic tri-selenide, As2Se3. In this effort, As2Se3 glass was investigated and …


Nanoparticles In Solution-Derived Chalcogenide Glass Films, Spencer Novak May 2012

Nanoparticles In Solution-Derived Chalcogenide Glass Films, Spencer Novak

All Theses

The results in this thesis are from our efforts to modify the optical properties of solution-derived chalcogenide glass films by the incorporation of nanomaterials. First, the composition Ge23Sb7S70 was selected as the appropriate glass matrix for testing because solution-derived films of this composition have been well-studied in our group. Additionally, this composition was found to be less sensitive to certain processing parameters than As2S3, another well-studied, candidate chalcogenide glass composition, making Ge23Sb7S70 more suitable for the addition of nanomaterials. Optimization of film process parameters was performed to obtain high-quality films appropriate for doping with nanomaterials. This consisted of determining the …


Characterization And Optimization Of Solution-Derived Chalcogenide Glass Thin Films, Jacklyn Wilkinson May 2012

Characterization And Optimization Of Solution-Derived Chalcogenide Glass Thin Films, Jacklyn Wilkinson

All Theses

Chalcogenide glasses have many unique properties that allow them to be used in a variety of optical applications. Infrared transparency allows them to be used in sensors for molecules that have 'fingerprints' in the 2-25 μm range. By producing amorphous thin films of these materials, they can be incorporated into chemical sensors as planar waveguides and resonators. The goal of this work was to fabricate and characterize solution-derived chalcogenide thin films for use in chemical sensors with a source wavelength between 3-3.5 μm.
The structural and optical properties of the parent bulk glass were characterized and used as reference for …