Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Photonic Band Tuning In 2d Photonic Crystals By Atomic Layer Deposition, Elton Graugnard, Davy P. Gaillot, Simon N. Dunham, Curtis W. Neff, Tsuyoshi Yamashita, Christopher J. Summers Oct 2006

Photonic Band Tuning In 2d Photonic Crystals By Atomic Layer Deposition, Elton Graugnard, Davy P. Gaillot, Simon N. Dunham, Curtis W. Neff, Tsuyoshi Yamashita, Christopher J. Summers

Materials Science and Engineering Faculty Publications and Presentations

Atomic layer deposition (ALD) has become a powerful tool for the fabrication of high quality 3-dimentional photonic crystals (PCs) from both inorganic (opal) and organic (holographically patterned polymer) templates [1,2]. With ALD, highly conformal films can be grown with a precision of 0.05 nm, which, when combined with the availability of a wide range of low temperature film growth protocols, enables a high degree of control over material and structural properties to precisely tune optical properties [3]. Two-dimensional photonic crystals have been developed extensively for applications in optical interconnects, beam steering, and sensor devices; and are predominantly fabricated by electron-beam …


Propagation Loss Of Line-Defect Photonic Crystal Slab Waveguides, Wan Kuang, Woo J. Kim, Adam Mock, John O'Brien Jan 2006

Propagation Loss Of Line-Defect Photonic Crystal Slab Waveguides, Wan Kuang, Woo J. Kim, Adam Mock, John O'Brien

Electrical and Computer Engineering Faculty Publications and Presentations

Photonic crystal slab waveguides are created by inserting a linear defect in two-dimensional (2-D) periodic dielectric structures of finite height. Photonic crystals provide 2-D in-plane bandgaps through which light cannot propagate, however, the fact that the waveguide modes must be index-confined in the vertical direction implies that the propagation loss is strongly dependent on the out-of-plane radiation loss. We present a fully three-dimensional finite-difference time-domain numerical model for calculating the out-of-plane radiation loss in photonic crystal slab waveguides. The propagation loss of the single-line defect waveguide in 2-D triangular lattice photonic crystals is calculated for suspended membranes, oxidized lower claddings, …