Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

3d Printed Pcu/Uhmwpe Polymeric Blends For Artificial Knee Meniscus, Raissa Araujo Borges Dec 2017

3d Printed Pcu/Uhmwpe Polymeric Blends For Artificial Knee Meniscus, Raissa Araujo Borges

Graduate Theses and Dissertations

3D printing was used to fabricate porous artificial knee meniscus material from biocompatible polymeric blends of polycarbonate-urethane (PCU) and ultra-high-molecular-weight polyethylene (UHMWPE) to enable “weep” lubrication that mimics the native meniscus. 3D printed and molded pure PCU, as well as molded PCU and UHMWPE, were used for comparison. Preliminary printing was done to evaluate the impact of process parameters on the results. The samples were subject to a variety of rotational oscillating friction and wear tests under simulated body fluid and loading conditions to replicate the natural motion of the knee. Results show that 3D printed PCU samples yielded a …


Additive Manufacturing Techniques And Their Biomedical Applications, Yujing Liu, Wei Wang, Laichang Zhang Dec 2017

Additive Manufacturing Techniques And Their Biomedical Applications, Yujing Liu, Wei Wang, Laichang Zhang

Research outputs 2014 to 2021

Additive manufacturing (AM), also known as three-dimensional (3D) printing, is gaining increasing attention in medical fields, especially in dental and implant areas. Because AM technologies have many advantages in comparison with traditional technologies, such as the ability to manufacture patient-specific complex components, high material utilization, support of tissue growth, and a unique customized service for individual patients, AM is considered to have a large potential market in medical fields. This brief review presents the recent progress of 3D-printed ­biomedical materials for bone applications, mainly for metallic materials, including multifunctional alloys with high strength and low Young’s modulus, shape memory alloys, …


Fused Filament Fabrication 3d Printing Using Low-Melting Alloys., Nirupama Warrier Dec 2017

Fused Filament Fabrication 3d Printing Using Low-Melting Alloys., Nirupama Warrier

Electronic Theses and Dissertations

Fused Filament Fabrication (FFF) 3D printing technology has been a popular method of creating prototypes using plastics in the timeliest and most affordable manner for electronic, automotive, and biomedical applications. 3D printing of metals and alloys using FFF technology could provide low-cost alternatives and solutions to the Laser-Powder Bed Fusion Process (L-PBF) and Binder Jetting processes (BJ). In current work, low melting alloys have been used as a starting material and evaluated for FFF 3D printing using two methodologies. In the first methodology, Sn60Bi40 alloy in the form of wire was used as the feedstock for FFF extrusion and process …


Development Of An Electrospun And 3d Printed Cellular Delivery Device For Dermal Wound Healing, Ryan M. Clohessy Jan 2017

Development Of An Electrospun And 3d Printed Cellular Delivery Device For Dermal Wound Healing, Ryan M. Clohessy

Theses and Dissertations

The goal of this research was to develop a system of individualized medicine that could be applied to dermal wounds serving as a wound dressing and synthetic extracellular matrix while delivering stem cells to the wound bed. First, fabrication parameters for electrospinning polymer fibers were determined. This involved evaluating fiber morphology with respect to polymer selection and solution concentration. Next, construct fabrication was examined to produce an integrated void space, or cargo area, suitable to maintain stem cells. In vitro studies to ensure stem cell viability and phenotype were conducted, and results supported the notion that cells could be administered …