Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Entire DC Network

A New Method For Coupling 2d And 3d Deterministic And Stochastic Radiation Transport Calculations, Joel Aaron Kulesza Aug 2011

A New Method For Coupling 2d And 3d Deterministic And Stochastic Radiation Transport Calculations, Joel Aaron Kulesza

Masters Theses

The objective of this body of work was to produce a code system capable of processing boundary angular flux data from discrete ordinates calculations in 2D and 3D Cartesian and cylindrical geometries into cumulative probability density functions that can be used with a Monte Carlo radiation transport code to define neutron and photon initial positions, directions, and energies. In order to accomplish this goal, the DISCO (DetermInistic-Stochastic Coupling Operation) code was created to interface between the DORT and TORT deterministic radiation transport codes and the MCNP stochastic radiation transport code. DISCO introduces new methods to use the boundary angular flux …


A Wind Tunnel Technique For The Identification Of Ship Airwake/Rotor Downwash Coupling, Stargel R. Doane Jul 2011

A Wind Tunnel Technique For The Identification Of Ship Airwake/Rotor Downwash Coupling, Stargel R. Doane

Mechanical & Aerospace Engineering Theses & Dissertations

A wind tunnel study is performed to analyze the interaction between ship airwakes and helicopter rotor downwash. This interaction is of interest to naval aviators and researchers as this phenomenon is thought to limit helicopter flight envelopes and increase the overall difficulty of maritime rotorcraft operations. In this study, a 1/50th scale simplified naval frigate model and appropriately scaled rotor model are used for all experimental work. A rotor thrust survey was conducted in the immediate vicinity of the landing deck. Two dimensional and stereo particle image velocimetry surveys and rotor thrust measurements with various rotor and ship configurations were …


Effects Of Coupling In Understanding The Surface Energy Balance In The Snake River Basin, Idaho, Thilinl Jaksa, Kevin Nuss, Venkataramana Sridhar May 2011

Effects Of Coupling In Understanding The Surface Energy Balance In The Snake River Basin, Idaho, Thilinl Jaksa, Kevin Nuss, Venkataramana Sridhar

Civil Engineering Faculty Publications and Presentations

An accurate estimation of surface fluxes and evapotranspiration is critical in understanding the hydrological and meteorological processes linking the land and the atmosphere. Due to difficulties in obtaining extensive and timely field measurements, land surface and atmospheric models are widely employed in estimating such fluxes. This study focuses on testing the ability of Noah LSM to simulate the surface fluxes both in an uncoupled mode and coupled within an atmospheric model. An agricultural area in the Snake River Basin in Idaho and its surrounding natural vegetation regions are the study area. Two model improvements are tested in this investigation: modification …


Coupling Effects Of Feed Solution Ph And Ionic Strength On The Rejection Of Boron By Nf/Ro Membranes, Kha Tu, Long Nghiem, Allan Chivas Jan 2011

Coupling Effects Of Feed Solution Ph And Ionic Strength On The Rejection Of Boron By Nf/Ro Membranes, Kha Tu, Long Nghiem, Allan Chivas

Faculty of Engineering - Papers (Archive)

The coupling effects of solution pH and ionic strength on boron rejection by nanofiltration (NF) and reverse osmosis (RO) membranes were investigated. Two NF membranes (namely NF270 and NF90) and three RO membranes (namely BW30, SW30 and UTC80) were used to provide a full spectrum of NF/RO membranes. The rejection of boron by all five membranes was pH-dependent. The dependency of boron rejection on the feed solution pH became much more substantial as the nominal salt (sodium or calcium) rejection value of the membrane decreased. At pH 11, boron rejections by the NF90 and the NF270 membranes were only 10% …


Two-Color Terahertz Response In Bilayer Graphene Nanoribbons With Spin-Orbit Coupling, Junfeng Liu, Bo Wang, Zhongshui Ma, Chao Zhang Jan 2011

Two-Color Terahertz Response In Bilayer Graphene Nanoribbons With Spin-Orbit Coupling, Junfeng Liu, Bo Wang, Zhongshui Ma, Chao Zhang

Faculty of Engineering - Papers (Archive)

We demonstrate that spin-orbit coupling can give rise to a strong terahertz response in metallic armchair bilayer graphene nanoribbons. The combination of the interlayer coupling and the spin-orbit coupling leads to double resonant optical response in the low frequency regime. The frequency separation of the two excitations is tunable with a gate voltage.


Oxidative Acetylenic Coupling Reactions As A Surface Chemistry Tool, Simone Ciampi, Michael James, Nadim A. Darwish, Erwann Luais, Bin Guan, Jason Brian Harper, J Justin Gooding Jan 2011

Oxidative Acetylenic Coupling Reactions As A Surface Chemistry Tool, Simone Ciampi, Michael James, Nadim A. Darwish, Erwann Luais, Bin Guan, Jason Brian Harper, J Justin Gooding

Australian Institute for Innovative Materials - Papers

A novel method to prepare redox monolayers on silicon electrodes has been developed that employs CuI-catalyzed oxidative acetylenic coupling reactions for molecular electronic type applications. As the first case study, ethynylferrocene was covalently immobilized onto an acetylene-terminated monolayer on a Si(100) surface to give a 1,3-diyne (CC-CC-) linked redox assembly. The derivatization process requires no protection/de-protection steps, nor activation procedures. The effect of the conjugated diyne linkage on the rate of electron transfer between tethered ferrocenyl units and the silicon electrode is benchmarked against well-established "click" products (i.e. 1,2,3-triazole linkage). The surfaces, after each step, are characterized thoroughly using X-ray …