Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Entire DC Network

Molecularly Targeted Nanoparticles For Modulation Of Inflammatory Mediators In Atherosclerosis, Rohun Udatta Palekar Dec 2015

Molecularly Targeted Nanoparticles For Modulation Of Inflammatory Mediators In Atherosclerosis, Rohun Udatta Palekar

McKelvey School of Engineering Theses & Dissertations

The enzyme thrombin has been demonstrated through experimental and clinical studies to play a crucial role in mediating both inflammation and thrombosis in atherosclerosis. The cellular effects of thrombin in promoting atherosclerosis involve the activation of signaling pathways that result in the secretion of a host of various chemokines, cytokines, cell adhesion molecules, etc. that promote vascular inflammation. Due in part to thrombin and other pro-atherogenic molecules, this prolonged inflammatory state in atherosclerosis results in the deterioration of the endothelium, increasing the risk of focal thrombosis. Current treatment strategies to address the role of thrombin in atherosclerosis, despite efficacy of …


Synthesis And Functional Evaluation Of Peptide Modified Poly (Lactic-Co-Glycolic Acid) Nanoparticles To Inhibit Porphyromonas Gingivalis Biofilm Formation., Paridhi Kalia Dec 2015

Synthesis And Functional Evaluation Of Peptide Modified Poly (Lactic-Co-Glycolic Acid) Nanoparticles To Inhibit Porphyromonas Gingivalis Biofilm Formation., Paridhi Kalia

Electronic Theses and Dissertations

Periodontal disease is an oral inflammatory disorder that afflicts roughly 46% of the adults in the U.S. Currently, treatment of periodontal disease involves the removal of plaque from the gingival pocket (with possible antibiotic treatment) and if necessary, gingival surgery. To our knowledge, no therapeutic approach exists that promotes host-biofilm homeostasis by limiting pathogen recolonization of the oral cavity after prophylaxis or treatment. The interaction of the pathogen Porphyromonas gingivalis with commensal streptococci is critical for initiation of periodontitis and represents a target for limiting P. gingivalis colonization of the oral cavity. Previous studies showed that a synthetic peptide …


In Vacuo Fabrication And Electronic Structure Characterization Of Atomic Layer Deposition Thin Films, Michael Schaefer Nov 2015

In Vacuo Fabrication And Electronic Structure Characterization Of Atomic Layer Deposition Thin Films, Michael Schaefer

USF Tampa Graduate Theses and Dissertations

Improvement of novel electronic devices is possible by tailor-designing the electronic structure at device interfaces. Common problems observed at interfaces are related to unwanted band alignment caused by the chemical diversity of interface partners, influencing device performance negatively. One way to address this problem is by introducing ultra-thin interfacial dipole layers, steering the band alignment in a desired direction. The requirements are strict in terms of thickness, conformity and low density of defects, making sophisticated deposition techniques necessary. Atomic layer deposition (ALD) with its Ångstrom-precise thickness control can fulfill those requirements.

The work presented here encompasses the implementation of an …


Tin Nanoparticles Encapsulated In Hollow Tio2 Spheres As High Performance Anode Materials For Li-Ion Batteries, Xiang Pan Aug 2015

Tin Nanoparticles Encapsulated In Hollow Tio2 Spheres As High Performance Anode Materials For Li-Ion Batteries, Xiang Pan

Theses and Dissertations

Tin, an anode material with a high capacity for lithium-ion batteries, has poor cyclic performance because of the high volume expansion upon lithiation. Based on a literature review of the applications of lithium-ion batteries and current research progress of the tin-based anode materials for lithium-ion batteries, we developed a method to synthesize hollow TiO2 spheres with tin nanoparticles anchored on the inner surface of the TiO2 shell. Such a unique tin/TiO2 composite alleviates the volume change of tin–based anode materials in charge-discharge processes. SnCl2·2H2O (Tin (II) chloride dihydrate) and titanium (IV) isopropoxide (TIPT) were used as the Sn source and …


The Electroreduction Of Carbon Dioxide On Porous Copper Nanoparticles, Monica Alisa Padilla Jun 2015

The Electroreduction Of Carbon Dioxide On Porous Copper Nanoparticles, Monica Alisa Padilla

Chemical and Biological Engineering ETDs

Copper nanoparticles of porous, controlled structure were synthesized using the sacrificial support method (SSM). The precursor weight percent (wt%) of copper (Cu) and fumed silica (EH-5) was varied to determine the optimum ratio for this material. The precursors were reduced at i) 350°C in a 7% H2 atmosphere and ii) at 250°C in a 100% H2 atmosphere. The specific surface areas of the nanoparticles was measured by Brunauer-Emmett-Teller N2 absorption. The morphologies and widths of the nanoparticles were confirmed by imaging the nanoparticles by scanning electron microscopy (SEM). The bulk composition of the nanoparticles was determined by X-ray diffraction (XRD). …


In Vitro Studies Of Gold And Gold Silica Nanoparticle Radiosensitization With Kilovoltage X-Rays, Gregory Colarch May 2015

In Vitro Studies Of Gold And Gold Silica Nanoparticle Radiosensitization With Kilovoltage X-Rays, Gregory Colarch

UNLV Theses, Dissertations, Professional Papers, and Capstones

Technological advances in the ability to construct and manipulate nanoscale particles have opened up the possibility of using solid metallic nanoparticles and mixed metal nanoshells as a means to increase dose enhancement and treatment efficacy to tumors. In order for nanoparticles to be an effective form of treatment, they must be delivered to tumors in sufficient concentrations so that there is a dose enhancement factor due to ionizing radiation, as well as being essentially non-toxic to healthy cells. Gold nanoparticles and silica-gold nanoshells fit these requirements. Gold has a high atomic number (Z=79), which gives a larger cross section for …


Tailoring Nanoparticles And Polymers For Cooperative Interfacial And Surface Interactions, Irem Bolukbasi Mar 2015

Tailoring Nanoparticles And Polymers For Cooperative Interfacial And Surface Interactions, Irem Bolukbasi

Doctoral Dissertations

This thesis describes the synthesis of chemically functionalized nanoparticles and their behavior at interfaces and in conjunction with polymers. Solid-liquid, liquid-liquid, and air-liquid interfaces are useful platforms for studying nanoparticle assembly, especially when nanoparticles are functionalized to enable their segregation to the interface. At the liquid-liquid interface, double emulsions droplets, both oil-in-water-in-oil and water-in-oil-in-water, stabilized with nanoparticles were prepared. This involved gold nanoparticles stabilizing oil-in-water droplets, and CdSe quantum dots stabilizing water-in-oil droplets. These double emulsion droplets were by simply shaking to give polydisperse droplets, or in a well-defined fashion by microcapillary flow focusing. When nanoparticle-stabilized double emulsions were sized …


On Thermal Aging Prevention In Polymer Core Composite Conductor Rods, Joe D. Hoffman Jan 2015

On Thermal Aging Prevention In Polymer Core Composite Conductor Rods, Joe D. Hoffman

Electronic Theses and Dissertations

Increased energy usage in the United States and worldwide is driving the demand for new technologies to transmit electrical power in greater quantities and with reliable, safe, and more efficient methods. One recent innovation is to replace the standard Aluminum Conductor Steel Reinforced electrical transmission conductor with a new conductor design that utilizes a fiber reinforced polymer core rod to support a fully annealed aluminum conductor. This new technology that includes a hybrid carbon fiber/epoxy and glass fiber/epoxy support core allows for better efficiency and for greater current to be transmitted in the same size and weight line. These new …


An Exploration Of Plasmonics For Nanoparticle-Based Gene Delivery, Corey Raymond Landry Jan 2015

An Exploration Of Plasmonics For Nanoparticle-Based Gene Delivery, Corey Raymond Landry

LSU Master's Theses

The spatiotemporal control of biological processes, especially cell growth and differentiation, remains one of the most compelling challenges in basic and clinical biomedical research. Fields as diverse as cancer therapy and regenerative medicine rely on spatial and temporal control of biochemical cues to achieve desired biological objectives. MicroRNA are attractive for highly-localized delivery applications because their instability in the cell restricts their biological effect to a small target area. These short, non-coding strands can be easily synthesized and modified for attachment and release from nanoparticle delivery vehicles. The research interest around microRNA therapies has produced a wide array of pathways …


Investigation Of Lanthanide-Doped Anatase Tio2 Core-Shell Nanoparticles For Photocatalysis And Gas Sensing, Rezwanur Rahman Jan 2015

Investigation Of Lanthanide-Doped Anatase Tio2 Core-Shell Nanoparticles For Photocatalysis And Gas Sensing, Rezwanur Rahman

MSU Graduate Theses

Anatase TiO2 has been shown to be potential applications for photo-remediation of chemical waste as well as for photocatalytic splitting of water. The catalytic properties of TiO2 materials can be modified by doping with lanthanide (Ln) ions. In order to minimize the distortion and/or change of the structure of TiO2 nanoparticles, surface doping of anatase TiO2 nanoparticles (~ 14 nm) with several Ln ions (Nd3+, Gd3+, Eu3+, Yb3+) has been successfully made. X-ray diffraction (XRD) and Raman characterization shows that the anatase phase of treated nanoparticles is well preserved. Scanning electron microscopy (SEM) shows that the majority of the nanoparticles …


Antioxidant Activity Of Lutein Entrapped In Poly (Dl-Lactide Co-Glycolide) Acid And Plga/Chitosan Nanoparticles, Toni Borel Lousteau Jan 2015

Antioxidant Activity Of Lutein Entrapped In Poly (Dl-Lactide Co-Glycolide) Acid And Plga/Chitosan Nanoparticles, Toni Borel Lousteau

LSU Master's Theses

Polymeric nanocarriers improve cellular uptake, stability, solubility, and functionality of entrapped drugs and nutraceuticals. The hypothesis of this study was that entrapping lutein, a hydrophobic antioxidant, in different polymeric nanoparticles (NPs) will improve its stability and antioxidant activity. The following objectives were proposed: 1. Synthesize and characterize polymeric nanoparticles of poly lactic co-glycolic acid (PLGA) and PLGA NPs covered with a layer of chitosan (PLGA/Chi) from a physicochemical perspective, and 2. Assess functionality of the entrapped lutein as a function of type of polymer in which entrapped. Nanoparticles were synthesized by emulsion evaporation method. Characterization included size, zeta potential, and …


Optimization Of Polydopamine Coatings, Helen C. Terrill Ms. Jan 2015

Optimization Of Polydopamine Coatings, Helen C. Terrill Ms.

Williams Honors College, Honors Research Projects

Polydopamine coatings were fabricated onto the surfaces of glass slides, silicon wafers, and Teflon pieces. A method to change surface properties was optimized, providing a new way of using substrates by means of make-over surface properties. The technology has a wide range of potential approaches including high performance coatings and biomedical surfaces. The experiments can be conducted with various types of surface modifications to make surfaces hydrophilic, hydrophobic, conductive, or magnetic. The changes of film thickness and surface energy as functions of incubation time were quantified by means of ellipsometry, profilometry, and contact angle measurements. The use of primer polydopamine …


Characterization Of Metallic And Semimetallic Oxide Nanoparticles In Industrial Wastewater And Associated Toxicity, Gary Roth Jan 2015

Characterization Of Metallic And Semimetallic Oxide Nanoparticles In Industrial Wastewater And Associated Toxicity, Gary Roth

Legacy Theses & Dissertations (2009 - 2024)

Engineered nanomaterials (ENMs) play an increasing role in manufacturing and consumer products. Currently, there is no standard approach to studying ENM toxicity, and a growing body of literature suggests that ENMs may have toxicity differing from similar compounds in bulk or dissolved form. I examined ENMs used in the semiconductor manufacturing process called chemical-mechanical planarization (CMP) for their properties, removal in the wastewater treatment system (WWT), in-vitro toxicity, and location post-inhalation in-vivo. It was found that ENMs in CMP slurries have morphology determined by their elemental composition, but assessment of size and concentration can differ substantially between accepted techniques. Particles …


Inhalable Nanocomposites And Anticancer Agents For Cancer Therapy, Nathanael A. Stocke Jan 2015

Inhalable Nanocomposites And Anticancer Agents For Cancer Therapy, Nathanael A. Stocke

Theses and Dissertations--Chemical and Materials Engineering

Cancer is designated as the leading cause of mortality worldwide and lung cancer is responsible for nearly 30% of all cancer related deaths. Over the last few decades mortality rates have only marginally increased and rates of recurrence remain high. These factors, among others, suggest the need for more innovative treatment modalities in lung cancer therapy. Targeted pulmonary delivery is well established for treating pulmonary diseases such as asthma and provides a promising platform for lung cancer therapy. Increasing local deposition of anticancer agents (ACAs) and reducing systemic exposure of these toxic moieties could lead to better therapeutic outcomes and …


Enhanced Magnetoimpedance And Microwave Absorption Responses Of Soft Ferromagnetic Materials For Biodetection And Energy Sensing, Jagannath Devkota Jan 2015

Enhanced Magnetoimpedance And Microwave Absorption Responses Of Soft Ferromagnetic Materials For Biodetection And Energy Sensing, Jagannath Devkota

USF Tampa Graduate Theses and Dissertations

A combination of magnetic sensors with magnetic nanoparticles offers a promising approach for highly sensitive, simple, and rapid detection of cancer cells and biomolecules. The challenge facing the field of magnetic biosensing is the development of low-cost devices capable of superconducting quantum interference device (SQUID)-like field sensitivity at room temperature. In another area of interest, improving the sensitivity of existing electromagnetic field sensors for microwave energy sensing applications is an important and challenging task. In this dissertation, we have explored the excellent magnetoimpedance and microwave absorption responses of soft ferromagnetic amorphous ribbons and microwires for the development of high-performance magnetic …


Hierarchical Porous Structures With Aligned Carbon Nanotubes As Efficient Adsorbents And Metal-Catalyst Supports, Hema Vijwani Jan 2015

Hierarchical Porous Structures With Aligned Carbon Nanotubes As Efficient Adsorbents And Metal-Catalyst Supports, Hema Vijwani

Browse all Theses and Dissertations

The overall goal of this study is two-fold: synthesis of multiscale nanostructures by growing aligned carbon nanotubes on porous foam substrates and investigation of their applicability as adsorbents and catalyst supports for environmental remediation applications. High purity, vertically-aligned arrays of carbon nanotubes (CNT) are grown on open-cell interconnected porous carbon foams by pre-activating them with an oxide buffer layer followed by chemical vapor deposition (CVD). This type of hierarchical morphology provides the capability of increasing surface area by several orders of magnitude, while tuning its morphology for targeted applications. Analytical models are also proposed in this study for specific surface …