Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Entire DC Network

Accelerating Peripheral Nerve Regeneration Using Electrical Stimulation Of Selected Power Spectral Densities, Wei-Ming Yu, Madelyn Mccullen, Vincent Chiun-Fan Chen Apr 2022

Accelerating Peripheral Nerve Regeneration Using Electrical Stimulation Of Selected Power Spectral Densities, Wei-Ming Yu, Madelyn Mccullen, Vincent Chiun-Fan Chen

Engineering Science Faculty Publications

Peripheral nerve injuries are common consequences of extremity trauma or chronic compression with a prevalence of 43.8 per 1 million people (on average) reported in the United States annually, accompanied by a yearly increase in cost of care. Patients suffering from these injuries require surgical procedures and rehabilitative strategies to reinforce their extensive recovery. Several studies have found that the application of electrical stimulation can accelerate peripheral nerve regeneration, thus shortening the time of peripheral nerve growth and reducing the cost of care (Willand et al., 2016). The electrical stimulation paradigms that effectively enhanced functional recovery in most studies employed …


Invertebrate Retinal Progenitors As Regenerative Models In A Microfluidic System, Caroline D. Pena, Stephanie Zhang, Robert Majeska, Tadmiri Venkatesh, Maribel Vazquez Oct 2019

Invertebrate Retinal Progenitors As Regenerative Models In A Microfluidic System, Caroline D. Pena, Stephanie Zhang, Robert Majeska, Tadmiri Venkatesh, Maribel Vazquez

Publications and Research

Regenerative retinal therapies have introduced progenitor cells to replace dysfunctional or injured neurons and regain visual function. While contemporary cell replacement therapies have delivered retinal progenitor cells (RPCs) within customized biomaterials to promote viability and enable transplantation, outcomes have been severely limited by the misdirected and/or insuffcient migration of transplanted cells. RPCs must achieve appropriate spatial and functional positioning in host retina, collectively, to restore vision, whereas movement of clustered cells differs substantially from the single cell migration studied in classical chemotaxis models. Defining how RPCs interact with each other, neighboring cell types and surrounding extracellular matrixes are critical to …


Emerging Roles Of The Membrane Potential: Action Beyond The Action Potential, Lina Abdul Kadir, Michael Stacey, Richard Barrett-Jolley Nov 2018

Emerging Roles Of The Membrane Potential: Action Beyond The Action Potential, Lina Abdul Kadir, Michael Stacey, Richard Barrett-Jolley

Bioelectrics Publications

Whilst the phenomenon of an electrical resting membrane potential (RMP) is a central tenet of biology, it is nearly always discussed as a phenomenon that facilitates the propagation of action potentials in excitable tissue, muscle, and nerve. However, as ion channel research shifts beyond these tissues, it became clear that the RMP is a feature of virtually all cells studied. The RMP is maintained by the cell's compliment of ion channels. Transcriptome sequencing is increasingly revealing that equally rich compliments of ion channels exist in both excitable and non-excitable tissue. In this review, we discuss a range of critical roles …


Electrical Stimulation With A Conductive Polymer Promotes Neurite Outgrowth And Synaptogenesis In Primary Cortical Neurons In 3d, Qingsheng Zhang, Stephen T. Beirne, Kewei Shu, Dorna Esrafilzadeh, Xu-Feng Huang, Gordon G. Wallace Jan 2018

Electrical Stimulation With A Conductive Polymer Promotes Neurite Outgrowth And Synaptogenesis In Primary Cortical Neurons In 3d, Qingsheng Zhang, Stephen T. Beirne, Kewei Shu, Dorna Esrafilzadeh, Xu-Feng Huang, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Deficits in neurite outgrowth and synaptogenesis have been recognized as an underlying developmental aetiology of psychosis. Electrical stimulation promotes neuronal induction including neurite outgrowth and branching. However, the effect of electrical stimulation using 3D electrodes on neurite outgrowth and synaptogenesis has not been explored. This study examined the effect of 3D electrical stimulation on 3D primary cortical neuronal cultures. 3D electrical stimulation improved neurite outgrowth in 3D neuronal cultures from both wild-Type and NRG1-knockout (NRG1-KO) mice. The expression of synaptophysin and PSD95 were elevated under 3D electrical stimulation. Interestingly, 3D electrical stimulation also improved neural cell aggregation as well as …


Analytical Modeling Of A Communication Channel Based On Subthreshold Stimulation Of Neurobiological Networks, Alireza Khodaei Dec 2017

Analytical Modeling Of A Communication Channel Based On Subthreshold Stimulation Of Neurobiological Networks, Alireza Khodaei

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

The emergence of wearable and implantable machines manufactured artificially or synthesized biologically opens up a new horizon for patient-centered health services such as medical treatment, health monitoring, and rehabilitation with minimized costs and maximized popularity when provided remotely via the Internet. In particular, a swarm of machines at the scale of a single cell down to the nanoscale can be deployed in the body by the non-invasive or minimally invasive operation (e.g., swallowing and injection respectively) to perform various tasks. However, an individual machine is only able to perform basic tasks so it needs to exchange data with the others …


Electrical Stimulation Using Conductive Polymer Polypyrrole Counters Reduced Neurite Outgrowth Of Primary Prefrontal Cortical Neurons From Nrg1-Ko And Disc1-Li Mice, Qingsheng Zhang, Dorna Esrafilzadeh, Jeremy Micah Crook, Robert M. I Kapsa, Elise M. Stewart, Eva Tomaskovic-Crook, Gordon G. Wallace, Xu-Feng Huang Jan 2017

Electrical Stimulation Using Conductive Polymer Polypyrrole Counters Reduced Neurite Outgrowth Of Primary Prefrontal Cortical Neurons From Nrg1-Ko And Disc1-Li Mice, Qingsheng Zhang, Dorna Esrafilzadeh, Jeremy Micah Crook, Robert M. I Kapsa, Elise M. Stewart, Eva Tomaskovic-Crook, Gordon G. Wallace, Xu-Feng Huang

Australian Institute for Innovative Materials - Papers

Deficits in neurite outgrowth, possibly involving dysregulation of risk genes neuregulin-1 (NRG1) and disrupted in schizophrenia 1 (DISC1) have been implicated in psychiatric disorders including schizophrenia. Electrical stimulation using conductive polymers has been shown to stimulate neurite outgrowth of differentiating human neural stem cells. This study investigated the use of the electroactive conductive polymer polypyrrole (Ppy) to counter impaired neurite outgrowth of primary pre-frontal cortical (PFC) neurons from NRG1-knock out (NRG1-KO) and DISC1-locus impairment (DISC1-LI) mice. Whereas NRG1-KO and DISC1-LI exhibited reduced neurite length and number of neurite branches compared to wild-type controls, this was not apparent for cultures on …


In Vivo Mri Signatures Of Hippocampal Subfield Pathology In Intractable Epilepsy., Maged Goubran, Boris C Bernhardt, Diego Cantor-Rivera, Jonathan C Lau, Charlotte Blinston, Robert R Hammond, Sandrine De Ribaupierre, Jorge G Burneo, Seyed M Mirsattari, David A Steven, Andrew G Parrent, Andrea Bernasconi, Neda Bernasconi, Terry M Peters, Ali R Khan Jan 2015

In Vivo Mri Signatures Of Hippocampal Subfield Pathology In Intractable Epilepsy., Maged Goubran, Boris C Bernhardt, Diego Cantor-Rivera, Jonathan C Lau, Charlotte Blinston, Robert R Hammond, Sandrine De Ribaupierre, Jorge G Burneo, Seyed M Mirsattari, David A Steven, Andrew G Parrent, Andrea Bernasconi, Neda Bernasconi, Terry M Peters, Ali R Khan

Robarts Imaging Publications

OBJECTIVES: Our aim is to assess the subfield-specific histopathological correlates of hippocampal volume and intensity changes (T1, T2) as well as diff!usion MRI markers in TLE, and investigate the efficacy of quantitative MRI measures in predicting histopathology in vivo.

EXPERIMENTAL DESIGN: We correlated in vivo volumetry, T2 signal, quantitative T1 mapping, as well as diffusion MRI parameters with histological features of hippocampal sclerosis in a subfield-specific manner. We made use of on an advanced co-registration pipeline that provided a seamless integration of preoperative 3 T MRI with postoperative histopathological data, on which metrics of cell loss and gliosis were quantitatively …


Pre-Differentiation Of Human Neural Stem Cells Into Gabaergic Neurons Prior To Transplant Results In Greater Repopulation Of The Damaged Brain And Accelerates Functional Recovery After Transient Ischemic Stroke, Hima C. S Abeysinghe, Laita Bokhari, Anita F. Quigley, Mahesh A. Choolani, Jerry Chan, Gregory J. Dusting, Jeremy M. Crook, Nao R. Kobayashi, Carli Roulston Jan 2015

Pre-Differentiation Of Human Neural Stem Cells Into Gabaergic Neurons Prior To Transplant Results In Greater Repopulation Of The Damaged Brain And Accelerates Functional Recovery After Transient Ischemic Stroke, Hima C. S Abeysinghe, Laita Bokhari, Anita F. Quigley, Mahesh A. Choolani, Jerry Chan, Gregory J. Dusting, Jeremy M. Crook, Nao R. Kobayashi, Carli Roulston

Australian Institute for Innovative Materials - Papers

2015 Abeysinghe et al. Introduction: Despite attempts to prevent brain injury during the hyperacute phase of stroke, most sufferers end up with significant neuronal loss and functional deficits. The use of cell-based therapies to recover the injured brain offers new hope. In the current study, we employed human neural stem cells (hNSCs) isolated from subventricular zone (SVZ), and directed their differentiation into GABAergic neurons followed by transplantation to ischemic brain. Methods: Pre-differentiated GABAergic neurons, undifferentiated SVZ-hNSCs or media alone were stereotaxically transplanted into the rat brain (n=7/group) 7 days after endothelin-1 induced stroke. Neurological outcome was assessed by neurological deficit …


Nanosecond Pulsed Electric Field Thresholds For Nanopore Formation In Neural Cells., Caleb C Roth, Gleb P Tolstykh, Jason A Payne, Marjorie A Kuipers, Gary L. Thompson Iii, Mauris N Desilva, Bennett L Ibey Mar 2013

Nanosecond Pulsed Electric Field Thresholds For Nanopore Formation In Neural Cells., Caleb C Roth, Gleb P Tolstykh, Jason A Payne, Marjorie A Kuipers, Gary L. Thompson Iii, Mauris N Desilva, Bennett L Ibey

Henry M. Rowan College of Engineering Faculty Scholarship

The persistent influx of ions through nanopores created upon cellular exposure to nanosecond pulse electric fields (nsPEF) could be used to modulate neuronal function. One ion, calcium (Ca(2+)), is important to action potential firing and regulates many ion channels. However, uncontrolled hyper-excitability of neurons leads to Ca(2+) overload and neurodegeneration. Thus, to prevent unintended consequences of nsPEF-induced neural stimulation, knowledge of optimum exposure parameters is required. We determined the relationship between nsPEF exposure parameters (pulse width and amplitude) and nanopore formation in two cell types: rodent neuroblastoma (NG108) and mouse primary hippocampal neurons (PHN). We identified thresholds for nanoporation using …


Robust Dynamic Balance Of Ap-1 Transcription Factors In A Neuronal Gene Regulatory Network., Gregory M Miller, Babatunde A Ogunnaike, James S Schwaber, Rajanikanth Vadigepalli Jan 2010

Robust Dynamic Balance Of Ap-1 Transcription Factors In A Neuronal Gene Regulatory Network., Gregory M Miller, Babatunde A Ogunnaike, James S Schwaber, Rajanikanth Vadigepalli

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

BACKGROUND: The octapeptide Angiotensin II is a key hormone that acts via its receptor AT1R in the brainstem to modulate the blood pressure control circuits and thus plays a central role in the cardiac and respiratory homeostasis. This modulation occurs via activation of a complex network of signaling proteins and transcription factors, leading to changes in levels of key genes and proteins. AT1R initiated activity in the nucleus tractus solitarius (NTS), which regulates blood pressure, has been the subject of extensive molecular analysis. But the adaptive network interactions in the NTS response to AT1R, plausibly related to the development of …