Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Fabrication And Characterization Of Polylactic Acid And Polylactic Acid/Multi-Walled Carbon Nanotube Nanofibers Through Centrifugal Spinning, Richard Patlan Dec 2012

Fabrication And Characterization Of Polylactic Acid And Polylactic Acid/Multi-Walled Carbon Nanotube Nanofibers Through Centrifugal Spinning, Richard Patlan

Theses and Dissertations - UTB/UTPA

Biocompatible polymer nanofibers hold great potential in the biomedical engineering field. Their biodegradable nature and enhanced properties could help solve a wide array of health related problems, particularly in the areas of tissue regeneration, drug delivery, and biosensor design. The novel ForcespinningTM method allows the production of submicron fibers without many of the drawbacks found in electrospinning, while also providing a substantial increase in fiber production. The aim of the study was to utilize this method to fabricate non-woven nanofibrous mats composed of polylactic acid (PLA) and polylactic acid/multi-walled carbon nanotube composite fibers. The morphology, thermal properties, and crystalline structure …


2d Modeling Of Forcespinning™ Nanofiber Formation With Experimental Study And Validation, Simon Padron Aug 2012

2d Modeling Of Forcespinning™ Nanofiber Formation With Experimental Study And Validation, Simon Padron

Theses and Dissertations - UTB/UTPA

A newly developed method of producing nanofibers, called Forcespinning™, has proven to be a viable alternative to mass produce nanofibers. Forcespinning™ utilizes centrifugal forces which allow for a host of new materials to be processed into nanofibers while also providing a significant increase in yield and ease of production. To improve and enhance the Forcespinning™ production method, a 2D computational Forcespinning™ fluid dynamics model is developed. Three computer models, namely time-independent and time-dependent inviscid models and a viscous model are obtained and the influences of various parameters on Forcespinning™ fiber formation are obtained. This work also presents a detailed explanation …