Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Engineering

PDF

Faculty Publications

2019

#antcenter

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Monte Carlo And Experimental Analysis Of A Novel Directional Rotating Scatter Mask Gamma Detection System, Julie V. Logan, Darren E. Holland, Larry W. Burggraf, Justin A. Clinton, Buckley E. O'Day Iii Dec 2019

Monte Carlo And Experimental Analysis Of A Novel Directional Rotating Scatter Mask Gamma Detection System, Julie V. Logan, Darren E. Holland, Larry W. Burggraf, Justin A. Clinton, Buckley E. O'Day Iii

Faculty Publications

Excerpt: This work demonstrates successful experimental operation of a prototype system to identify source direction which was modeled using a library of signals simulated using GEANT and a novel algorithm....


Ion Software-Defined Radio Metadata Standard Final Report, Sanjeev Gunawardena, Alexander Rugamer, Muhammad Subhan Hameed, Markel Arizabaleta, Thomas Pany, Javier Arribas Sep 2019

Ion Software-Defined Radio Metadata Standard Final Report, Sanjeev Gunawardena, Alexander Rugamer, Muhammad Subhan Hameed, Markel Arizabaleta, Thomas Pany, Javier Arribas

Faculty Publications

The ION GNSS SDR Metadata Standard describes the formatting and other essential PNT-related parameters of sampled data streams and files. This allows processors to seamlessly consume such data without the need to input these parameters manually. The technical development phase of the initial version of the standard has now been deemed complete and is currently undergoing the last remaining procedural steps towards adoption as a formal standard by the Institute of Navigation. This paper reports on the activities of the working group since September 2018 and summarizes the final products of the standard. It also reports on examples of early …


First Approach To Coupling Of Numerical Lifting-Line Theory And Linear Covariance Analysis For Uav State Uncertainty Propagation, Cory D. Goates, Randall S. Christensen, Robert C. Leishman Jan 2019

First Approach To Coupling Of Numerical Lifting-Line Theory And Linear Covariance Analysis For Uav State Uncertainty Propagation, Cory D. Goates, Randall S. Christensen, Robert C. Leishman

Faculty Publications

Numerical lifting-line is a computationally efficient method for calculating aerodynamic forces and moments on aircraft. However, its potential has yet to be tapped for use in guidance, navigation, and control (GN&C). Linear covariance analysis is becoming a popular GN&C design tool and shows promise for pairing with numerical lifting-line. Pairing numerical lifting-line with linear covariance analysis allows for forward propagation of state uncertainty for real-time decision making. We demonstrate this for select state variables in a drone aerial recapture situation. Linear covariance analysis uses finite difference derivatives obtained from numerical lifting-line to calculate force and moment variances. These show agreement …


Real-Time Path Planning In Constrained, Uncertain Environments, Randall Christensen, Robert C. Leishman Jan 2019

Real-Time Path Planning In Constrained, Uncertain Environments, Randall Christensen, Robert C. Leishman

Faculty Publications

A key enabler of autonomous vehicles is the ability to plan the path of the vehicle to accomplish mission objectives. To be robust to realistic environments, path planners must account for uncertainty in the trajectory of the vehicle as well as uncertainty in the location of obstacles. The uncertainty in the trajectory of the vehicle is a difficult quantity to estimate, and is influenced by coupling between the vehicle dynamics, guidance, navigation, and control system as well as any disturbances acting on the vehicle. Monte Carlo analysis is the conventional approach to determine vehicle dispersion, while accounting for the coupled …