Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Entire DC Network

Implementation Of The Plan For Every Part (Pfep) Tool And Additional Methodologies For Operational Improvement., Bernardo Luis Borges Pedroso Dec 2022

Implementation Of The Plan For Every Part (Pfep) Tool And Additional Methodologies For Operational Improvement., Bernardo Luis Borges Pedroso

Masters Theses

The work focused on the inventory management of Dimplex Thermal Solutions, which had a profoundly overstocked warehouse and was suffering from significant operating expenses, due to the absence of a grounded ordering policy and the need to rent external storage space, respectively.

The main objective of the thesis was to solve the primarily mentioned problems, by constructing a Plan For Every Part (PFEP) tool, followed by the application of an inventory policy and the proposal of a redesigned warehouse layout, to compute ideal stock values and calculate the footprint requirements for Dimplex’s updated inventory levels, respectively. The execution step concerned …


The Design And Development Of A Miniature Gridded Ecr Ion Thruster, Nicholas Nuzzo Dec 2022

The Design And Development Of A Miniature Gridded Ecr Ion Thruster, Nicholas Nuzzo

Masters Theses

Plasma propulsion, a specific subset of electric propulsion (EP), is a class of space propulsion that produces plasma by excitation of a propellant at or above its ionization energy. This ionized propellant is then accelerated by an externally applied field (magnetic and/or electric) and produces thrust. There is an increasing need for miniaturization in spacecraft technology and the use of plasma EP devices in space propulsion. These systems provide an advantage over traditional chemical propulsion solutions which are less efficient and have more mass. Miniaturization of EP devices allows missions to have more space and mass available for their payloads …


Measurement Of Low-Speed Impinging Jet Structure Using Temperature Sensitive Paint, Arthur Dean Woodworth Dec 2022

Measurement Of Low-Speed Impinging Jet Structure Using Temperature Sensitive Paint, Arthur Dean Woodworth

Masters Theses

Temperature sensitive paint (TSP) is used to analyze surface flow structures driven by a jet impinging on a heated steel sheet. Temperature and Nusselt number images are calculated from CCD images of the TSP surface. TSP calibration is discussed. Skin friction data is obtained from the temperature images.

Data is collected for metal and 3D-printed plastic nozzles of varying shape and size at one or two jet airspeeds depending on the nozzle. For the circular nozzles, data is collected for four Reynolds numbers at impinging angles of 90, 70, and 50 degrees. For the elliptical nozzles and the star-shaped nozzle, …


Development Of A Ppg Sensor Array As A Wearable Device For Monitoring Cardiovascular Metrics, Jose Ignacio Rodriguez-Labra Apr 2022

Development Of A Ppg Sensor Array As A Wearable Device For Monitoring Cardiovascular Metrics, Jose Ignacio Rodriguez-Labra

Masters Theses

Wearable devices with integrated sensors for tracking human vitals are widely used for a variety of applications, including exercise, wellness, and health monitoring. Photoplethysmography (PPG) sensors use pulse oximetry to measure pulse rate, cardiac cycle, oxygen saturation, and blood flow by passing a light beam of variable wavelength through the skin and measuring its reflection. A multi-channel PPG wearable system was developed to include multiple nodes of pulse oximeters, each capable of using different wavelengths of light. The system uses sensor fusion along with a machine learning model to perform feature extraction of relevant cardiovascular metrics across multiple pulse oximeters …


Dynamic Maneuvers For Satellite On-Orbit Servicing Utilizing Novel Continuum Robotics: Development & Experimentation, Nathan Dalton Apr 2022

Dynamic Maneuvers For Satellite On-Orbit Servicing Utilizing Novel Continuum Robotics: Development & Experimentation, Nathan Dalton

Masters Theses

Robotic on-orbit servicing is a developing technology that seeks to increase the longevity and repairability of faulty or aging resident space objects. In this research, the development of a flexible continuum manipulator for a small satellite system that performs low-complexity on-orbit servicing or debris removal is presented. Derivations of manipulator kinematics are described in detail, a non-linear control scheme has been developed, and the accuracy and servicing applications for the prototype are evaluated and discussed. The manipulator has been tested on an air-bearing dynamics simulator, and the results are extensively analyzed. System recommendations and future work suggestions are presented.


Design And Optimization Of An Electron Cyclotron Resonance Thruster, Austen Thomas Apr 2022

Design And Optimization Of An Electron Cyclotron Resonance Thruster, Austen Thomas

Masters Theses

Presented in this work is the process in the design and optimization of a coaxial electron cyclotron resonance thruster. Electron cyclotron resonance thrusters are novel microwave-based thrusters which possess select technological advantages over mature electric propulsion concepts such as being electrodeless and only requiring a single power source. The thruster constructed in this work is a coaxial configuration and is termed the Western electron cyclotron resonance thruster. Thruster dimensions were optimized based on past experimentation completed with ECR thrusters. In an attempt to enhance the microwave plasma coupling of the coaxial thruster design three different antenna configurations were considered: a …