Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Understanding Homogeneous Nucleation In Solidification Of Aluminum By Molecular Dynamics Simulations, A. Mahata, Mohsen Asle Zaeem, M. I. Baskes Mar 2018

Understanding Homogeneous Nucleation In Solidification Of Aluminum By Molecular Dynamics Simulations, A. Mahata, Mohsen Asle Zaeem, M. I. Baskes

Materials Science and Engineering Faculty Research & Creative Works

Homogeneous nucleation from aluminum (Al) melt was investigated by million-atom molecular dynamics simulations utilizing the second nearest neighbor modified embedded atom method potentials. The natural spontaneous homogenous nucleation from the Al melt was produced without any influence of pressure, free surface effects and impurities. Initially isothermal crystal nucleation from undercooled melt was studied at different constant temperatures, and later superheated Al melt was quenched with different cooling rates. The crystal structure of nuclei, critical nucleus size, critical temperature for homogenous nucleation, induction time, and nucleation rate were determined. The quenching simulations clearly revealed three temperature regimes: sub-critical nucleation, super-critical nucleation, …


A Constitutive Model For Entangled Polydisperse Linear Flexible Polymers With Entanglement Dynamics And A Configuration Dependent Friction Coefficient. Part I: Model Derivation, David W. Mead, Saman Monjezi, Joontaek Park Jan 2018

A Constitutive Model For Entangled Polydisperse Linear Flexible Polymers With Entanglement Dynamics And A Configuration Dependent Friction Coefficient. Part I: Model Derivation, David W. Mead, Saman Monjezi, Joontaek Park

Chemical and Biochemical Engineering Faculty Research & Creative Works

A new polydisperse "toy" constitutive model is derived and developed from fundamental principles and ideas governing the nonlinear rheology of linear flexible polymers [Mead et al., J. Rheol. 59, 335-363 (2015)]. Specifically, the new model is comprised of four fundamental pieces. First, the model contains a simple differential description of the entanglement dynamics of discrete entanglement pairs. Second, the model contains a differential description of the ij entanglement pair orientation tensor dynamics. Third, following a similar development by Mead and Mishler [J. Non-Newtonian Fluid Mech. 197, 61-79 and 80-90 (2013).], a diluted stretch tube is constructed to describe the relative …